Spaces:
Running
Running
File size: 67,451 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 |
from .utils import max_, min_
from nodes import MAX_RESOLUTION
import comfy.utils
from nodes import SaveImage
from node_helpers import pillow
from PIL import Image, ImageOps
import kornia
import torch
import torch.nn.functional as F
import torchvision.transforms.v2 as T
#import warnings
#warnings.filterwarnings('ignore', module="torchvision")
import math
import os
import numpy as np
import folder_paths
from pathlib import Path
import random
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image analysis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageEnhanceDifference:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"exponent": ("FLOAT", { "default": 0.75, "min": 0.00, "max": 1.00, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image analysis"
def execute(self, image1, image2, exponent):
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.permute([0,3,1,2]), image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
diff_image = image1 - image2
diff_image = torch.pow(diff_image, exponent)
diff_image = torch.clamp(diff_image, 0, 1)
return(diff_image,)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Batch tools
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageBatchMultiple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image_1": ("IMAGE",),
"method": (["nearest-exact", "bilinear", "area", "bicubic", "lanczos"], { "default": "lanczos" }),
}, "optional": {
"image_2": ("IMAGE",),
"image_3": ("IMAGE",),
"image_4": ("IMAGE",),
"image_5": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image_1, method, image_2=None, image_3=None, image_4=None, image_5=None):
out = image_1
if image_2 is not None:
if image_1.shape[1:] != image_2.shape[1:]:
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((image_1, image_2), dim=0)
if image_3 is not None:
if image_1.shape[1:] != image_3.shape[1:]:
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_3), dim=0)
if image_4 is not None:
if image_1.shape[1:] != image_4.shape[1:]:
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_4), dim=0)
if image_5 is not None:
if image_1.shape[1:] != image_5.shape[1:]:
image_5 = comfy.utils.common_upscale(image_5.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_5), dim=0)
return (out,)
class ImageExpandBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"size": ("INT", { "default": 16, "min": 1, "step": 1, }),
"method": (["expand", "repeat all", "repeat first", "repeat last"],)
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image, size, method):
orig_size = image.shape[0]
if orig_size == size:
return (image,)
if size <= 1:
return (image[:size],)
if 'expand' in method:
out = torch.empty([size] + list(image.shape)[1:], dtype=image.dtype, device=image.device)
if size < orig_size:
scale = (orig_size - 1) / (size - 1)
for i in range(size):
out[i] = image[min(round(i * scale), orig_size - 1)]
else:
scale = orig_size / size
for i in range(size):
out[i] = image[min(math.floor((i + 0.5) * scale), orig_size - 1)]
elif 'all' in method:
out = image.repeat([math.ceil(size / image.shape[0])] + [1] * (len(image.shape) - 1))[:size]
elif 'first' in method:
if size < image.shape[0]:
out = image[:size]
else:
out = torch.cat([image[:1].repeat(size-image.shape[0], 1, 1, 1), image], dim=0)
elif 'last' in method:
if size < image.shape[0]:
out = image[:size]
else:
out = torch.cat((image, image[-1:].repeat((size-image.shape[0], 1, 1, 1))), dim=0)
return (out,)
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"start": ("INT", { "default": 0, "min": 0, "step": 1, }),
"length": ("INT", { "default": -1, "min": -1, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image, start, length):
if length<0:
length = image.shape[0]
start = min(start, image.shape[0]-1)
length = min(image.shape[0]-start, length)
return (image[start:start + length], )
class ImageListToBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
INPUT_IS_LIST = True
CATEGORY = "essentials/image batch"
def execute(self, image):
shape = image[0].shape[1:3]
out = []
for i in range(len(image)):
img = image[i]
if image[i].shape[1:3] != shape:
img = comfy.utils.common_upscale(img.permute([0,3,1,2]), shape[1], shape[0], upscale_method='bicubic', crop='center').permute([0,2,3,1])
out.append(img)
out = torch.cat(out, dim=0)
return (out,)
class ImageBatchToList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image):
return ([image[i].unsqueeze(0) for i in range(image.shape[0])], )
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image manipulation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageCompositeFromMaskBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image_from": ("IMAGE", ),
"image_to": ("IMAGE", ),
"mask": ("MASK", )
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image_from, image_to, mask):
frames = mask.shape[0]
if image_from.shape[1] != image_to.shape[1] or image_from.shape[2] != image_to.shape[2]:
image_to = comfy.utils.common_upscale(image_to.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
if frames < image_from.shape[0]:
image_from = image_from[:frames]
elif frames > image_from.shape[0]:
image_from = torch.cat((image_from, image_from[-1].unsqueeze(0).repeat(frames-image_from.shape[0], 1, 1, 1)), dim=0)
mask = mask.unsqueeze(3).repeat(1, 1, 1, 3)
if image_from.shape[1] != mask.shape[1] or image_from.shape[2] != mask.shape[2]:
mask = comfy.utils.common_upscale(mask.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
out = mask * image_to + (1 - mask) * image_from
return (out, )
class ImageComposite:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"destination": ("IMAGE",),
"source": ("IMAGE",),
"x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, destination, source, x, y, offset_x, offset_y, mask=None):
if mask is None:
mask = torch.ones_like(source)[:,:,:,0]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, 3)
if mask.shape[1:3] != source.shape[1:3]:
mask = F.interpolate(mask.permute([0, 3, 1, 2]), size=(source.shape[1], source.shape[2]), mode='bicubic')
mask = mask.permute([0, 2, 3, 1])
if mask.shape[0] > source.shape[0]:
mask = mask[:source.shape[0]]
elif mask.shape[0] < source.shape[0]:
mask = torch.cat((mask, mask[-1:].repeat((source.shape[0]-mask.shape[0], 1, 1, 1))), dim=0)
if destination.shape[0] > source.shape[0]:
destination = destination[:source.shape[0]]
elif destination.shape[0] < source.shape[0]:
destination = torch.cat((destination, destination[-1:].repeat((source.shape[0]-destination.shape[0], 1, 1, 1))), dim=0)
if not isinstance(x, list):
x = [x]
if not isinstance(y, list):
y = [y]
if len(x) < destination.shape[0]:
x = x + [x[-1]] * (destination.shape[0] - len(x))
if len(y) < destination.shape[0]:
y = y + [y[-1]] * (destination.shape[0] - len(y))
x = [i + offset_x for i in x]
y = [i + offset_y for i in y]
output = []
for i in range(destination.shape[0]):
d = destination[i].clone()
s = source[i]
m = mask[i]
if x[i]+source.shape[2] > destination.shape[2]:
s = s[:, :, :destination.shape[2]-x[i], :]
m = m[:, :, :destination.shape[2]-x[i], :]
if y[i]+source.shape[1] > destination.shape[1]:
s = s[:, :destination.shape[1]-y[i], :, :]
m = m[:destination.shape[1]-y[i], :, :]
#output.append(s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m))
d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] = s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m)
output.append(d)
output = torch.stack(output)
# apply the source to the destination at XY position using the mask
#for i in range(destination.shape[0]):
# output[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] = source * mask + destination[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] * (1 - mask)
#for x_, y_ in zip(x, y):
# output[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] = source * mask + destination[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] * (1 - mask)
#output[:, y:y+source.shape[1], x:x+source.shape[2], :] = source * mask + destination[:, y:y+source.shape[1], x:x+source.shape[2], :] * (1 - mask)
#output = destination * (1 - mask) + source * mask
return (output,)
class ImageResize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"interpolation": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],),
"method": (["stretch", "keep proportion", "fill / crop", "pad"],),
"condition": (["always", "downscale if bigger", "upscale if smaller", "if bigger area", "if smaller area"],),
"multiple_of": ("INT", { "default": 0, "min": 0, "max": 512, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE", "INT", "INT",)
RETURN_NAMES = ("IMAGE", "width", "height",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, width, height, method="stretch", interpolation="nearest", condition="always", multiple_of=0, keep_proportion=False):
_, oh, ow, _ = image.shape
x = y = x2 = y2 = 0
pad_left = pad_right = pad_top = pad_bottom = 0
if keep_proportion:
method = "keep proportion"
if multiple_of > 1:
width = width - (width % multiple_of)
height = height - (height % multiple_of)
if method == 'keep proportion' or method == 'pad':
if width == 0 and oh < height:
width = MAX_RESOLUTION
elif width == 0 and oh >= height:
width = ow
if height == 0 and ow < width:
height = MAX_RESOLUTION
elif height == 0 and ow >= width:
height = oh
ratio = min(width / ow, height / oh)
new_width = round(ow*ratio)
new_height = round(oh*ratio)
if method == 'pad':
pad_left = (width - new_width) // 2
pad_right = width - new_width - pad_left
pad_top = (height - new_height) // 2
pad_bottom = height - new_height - pad_top
width = new_width
height = new_height
elif method.startswith('fill'):
width = width if width > 0 else ow
height = height if height > 0 else oh
ratio = max(width / ow, height / oh)
new_width = round(ow*ratio)
new_height = round(oh*ratio)
x = (new_width - width) // 2
y = (new_height - height) // 2
x2 = x + width
y2 = y + height
if x2 > new_width:
x -= (x2 - new_width)
if x < 0:
x = 0
if y2 > new_height:
y -= (y2 - new_height)
if y < 0:
y = 0
width = new_width
height = new_height
else:
width = width if width > 0 else ow
height = height if height > 0 else oh
if "always" in condition \
or ("downscale if bigger" == condition and (oh > height or ow > width)) or ("upscale if smaller" == condition and (oh < height or ow < width)) \
or ("bigger area" in condition and (oh * ow > height * width)) or ("smaller area" in condition and (oh * ow < height * width)):
outputs = image.permute(0,3,1,2)
if interpolation == "lanczos":
outputs = comfy.utils.lanczos(outputs, width, height)
else:
outputs = F.interpolate(outputs, size=(height, width), mode=interpolation)
if method == 'pad':
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
outputs = F.pad(outputs, (pad_left, pad_right, pad_top, pad_bottom), value=0)
outputs = outputs.permute(0,2,3,1)
if method.startswith('fill'):
if x > 0 or y > 0 or x2 > 0 or y2 > 0:
outputs = outputs[:, y:y2, x:x2, :]
else:
outputs = image
if multiple_of > 1 and (outputs.shape[2] % multiple_of != 0 or outputs.shape[1] % multiple_of != 0):
width = outputs.shape[2]
height = outputs.shape[1]
x = (width % multiple_of) // 2
y = (height % multiple_of) // 2
x2 = width - ((width % multiple_of) - x)
y2 = height - ((height % multiple_of) - y)
outputs = outputs[:, y:y2, x:x2, :]
outputs = torch.clamp(outputs, 0, 1)
return(outputs, outputs.shape[2], outputs.shape[1],)
class ImageFlip:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"axis": (["x", "y", "xy"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, axis):
dim = ()
if "y" in axis:
dim += (1,)
if "x" in axis:
dim += (2,)
image = torch.flip(image, dim)
return(image,)
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"position": (["top-left", "top-center", "top-right", "right-center", "bottom-right", "bottom-center", "bottom-left", "left-center", "center"],),
"x_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
"y_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE","INT","INT",)
RETURN_NAMES = ("IMAGE","x","y",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, width, height, position, x_offset, y_offset):
_, oh, ow, _ = image.shape
width = min(ow, width)
height = min(oh, height)
if "center" in position:
x = round((ow-width) / 2)
y = round((oh-height) / 2)
if "top" in position:
y = 0
if "bottom" in position:
y = oh-height
if "left" in position:
x = 0
if "right" in position:
x = ow-width
x += x_offset
y += y_offset
x2 = x+width
y2 = y+height
if x2 > ow:
x2 = ow
if x < 0:
x = 0
if y2 > oh:
y2 = oh
if y < 0:
y = 0
image = image[:, y:y2, x:x2, :]
return(image, x, y, )
class ImageTile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"overlap": ("FLOAT", { "default": 0, "min": 0, "max": 0.5, "step": 0.01, }),
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT")
RETURN_NAMES = ("IMAGE", "tile_width", "tile_height", "overlap_x", "overlap_y",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, rows, cols, overlap, overlap_x, overlap_y):
h, w = image.shape[1:3]
tile_h = h // rows
tile_w = w // cols
h = tile_h * rows
w = tile_w * cols
overlap_h = int(tile_h * overlap) + overlap_y
overlap_w = int(tile_w * overlap) + overlap_x
# max overlap is half of the tile size
overlap_h = min(tile_h // 2, overlap_h)
overlap_w = min(tile_w // 2, overlap_w)
if rows == 1:
overlap_h = 0
if cols == 1:
overlap_w = 0
tiles = []
for i in range(rows):
for j in range(cols):
y1 = i * tile_h
x1 = j * tile_w
if i > 0:
y1 -= overlap_h
if j > 0:
x1 -= overlap_w
y2 = y1 + tile_h + overlap_h
x2 = x1 + tile_w + overlap_w
if y2 > h:
y2 = h
y1 = y2 - tile_h - overlap_h
if x2 > w:
x2 = w
x1 = x2 - tile_w - overlap_w
tiles.append(image[:, y1:y2, x1:x2, :])
tiles = torch.cat(tiles, dim=0)
return(tiles, tile_w+overlap_w, tile_h+overlap_h, overlap_w, overlap_h,)
class ImageUntile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tiles": ("IMAGE",),
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, tiles, overlap_x, overlap_y, rows, cols):
tile_h, tile_w = tiles.shape[1:3]
tile_h -= overlap_y
tile_w -= overlap_x
out_w = cols * tile_w
out_h = rows * tile_h
out = torch.zeros((1, out_h, out_w, tiles.shape[3]), device=tiles.device, dtype=tiles.dtype)
for i in range(rows):
for j in range(cols):
y1 = i * tile_h
x1 = j * tile_w
if i > 0:
y1 -= overlap_y
if j > 0:
x1 -= overlap_x
y2 = y1 + tile_h + overlap_y
x2 = x1 + tile_w + overlap_x
if y2 > out_h:
y2 = out_h
y1 = y2 - tile_h - overlap_y
if x2 > out_w:
x2 = out_w
x1 = x2 - tile_w - overlap_x
mask = torch.ones((1, tile_h+overlap_y, tile_w+overlap_x), device=tiles.device, dtype=tiles.dtype)
# feather the overlap on top
if i > 0 and overlap_y > 0:
mask[:, :overlap_y, :] *= torch.linspace(0, 1, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1)
# feather the overlap on bottom
#if i < rows - 1:
# mask[:, -overlap_y:, :] *= torch.linspace(1, 0, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1)
# feather the overlap on left
if j > 0 and overlap_x > 0:
mask[:, :, :overlap_x] *= torch.linspace(0, 1, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0)
# feather the overlap on right
#if j < cols - 1:
# mask[:, :, -overlap_x:] *= torch.linspace(1, 0, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, tiles.shape[3])
tile = tiles[i * cols + j] * mask
out[:, y1:y2, x1:x2, :] = out[:, y1:y2, x1:x2, :] * (1 - mask) + tile
return(out, )
class ImageSeamCarving:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"energy": (["backward", "forward"],),
"order": (["width-first", "height-first"],),
},
"optional": {
"keep_mask": ("MASK",),
"drop_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image manipulation"
FUNCTION = "execute"
def execute(self, image, width, height, energy, order, keep_mask=None, drop_mask=None):
from .carve import seam_carving
img = image.permute([0, 3, 1, 2])
if keep_mask is not None:
#keep_mask = keep_mask.reshape((-1, 1, keep_mask.shape[-2], keep_mask.shape[-1])).movedim(1, -1)
keep_mask = keep_mask.unsqueeze(1)
if keep_mask.shape[2] != img.shape[2] or keep_mask.shape[3] != img.shape[3]:
keep_mask = F.interpolate(keep_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
if drop_mask is not None:
drop_mask = drop_mask.unsqueeze(1)
if drop_mask.shape[2] != img.shape[2] or drop_mask.shape[3] != img.shape[3]:
drop_mask = F.interpolate(drop_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
out = []
for i in range(img.shape[0]):
resized = seam_carving(
T.ToPILImage()(img[i]),
size=(width, height),
energy_mode=energy,
order=order,
keep_mask=T.ToPILImage()(keep_mask[i]) if keep_mask is not None else None,
drop_mask=T.ToPILImage()(drop_mask[i]) if drop_mask is not None else None,
)
out.append(T.ToTensor()(resized))
out = torch.stack(out).permute([0, 2, 3, 1])
return(out, )
class ImageRandomTransform:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"repeat": ("INT", { "default": 1, "min": 1, "max": 256, "step": 1, }),
"variation": ("FLOAT", { "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, seed, repeat, variation):
h, w = image.shape[1:3]
image = image.repeat(repeat, 1, 1, 1).permute([0, 3, 1, 2])
distortion = 0.2 * variation
rotation = 5 * variation
brightness = 0.5 * variation
contrast = 0.5 * variation
saturation = 0.5 * variation
hue = 0.2 * variation
scale = 0.5 * variation
torch.manual_seed(seed)
out = []
for i in image:
tramsforms = T.Compose([
T.RandomPerspective(distortion_scale=distortion, p=0.5),
T.RandomRotation(degrees=rotation, interpolation=T.InterpolationMode.BILINEAR, expand=True),
T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=(-hue, hue)),
T.RandomHorizontalFlip(p=0.5),
T.RandomResizedCrop((h, w), scale=(1-scale, 1+scale), ratio=(w/h, w/h), interpolation=T.InterpolationMode.BICUBIC),
])
out.append(tramsforms(i.unsqueeze(0)))
out = torch.cat(out, dim=0).permute([0, 2, 3, 1]).clamp(0, 1)
return (out,)
class RemBGSession:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (["u2net: general purpose", "u2netp: lightweight general purpose", "u2net_human_seg: human segmentation", "u2net_cloth_seg: cloths Parsing", "silueta: very small u2net", "isnet-general-use: general purpose", "isnet-anime: anime illustrations", "sam: general purpose"],),
"providers": (['CPU', 'CUDA', 'ROCM', 'DirectML', 'OpenVINO', 'CoreML', 'Tensorrt', 'Azure'],),
},
}
RETURN_TYPES = ("REMBG_SESSION",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, model, providers):
from rembg import new_session, remove
model = model.split(":")[0]
class Session:
def __init__(self, model, providers):
self.session = new_session(model, providers=[providers+"ExecutionProvider"])
def process(self, image):
return remove(image, session=self.session)
return (Session(model, providers),)
class TransparentBGSession:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mode": (["base", "fast", "base-nightly"],),
"use_jit": ("BOOLEAN", { "default": True }),
},
}
RETURN_TYPES = ("REMBG_SESSION",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, mode, use_jit):
from transparent_background import Remover
class Session:
def __init__(self, mode, use_jit):
self.session = Remover(mode=mode, jit=use_jit)
def process(self, image):
return self.session.process(image)
return (Session(mode, use_jit),)
class ImageRemoveBackground:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"rembg_session": ("REMBG_SESSION",),
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, rembg_session, image):
image = image.permute([0, 3, 1, 2])
output = []
for img in image:
img = T.ToPILImage()(img)
img = rembg_session.process(img)
output.append(T.ToTensor()(img))
output = torch.stack(output, dim=0)
output = output.permute([0, 2, 3, 1])
mask = output[:, :, :, 3] if output.shape[3] == 4 else torch.ones_like(output[:, :, :, 0])
# output = output[:, :, :, :3]
return(output, mask,)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image processing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageDesaturate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"factor": ("FLOAT", { "default": 1.00, "min": 0.00, "max": 1.00, "step": 0.05, }),
"method": (["luminance (Rec.709)", "luminance (Rec.601)", "average", "lightness"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, factor, method):
if method == "luminance (Rec.709)":
grayscale = 0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2]
elif method == "luminance (Rec.601)":
grayscale = 0.299 * image[..., 0] + 0.587 * image[..., 1] + 0.114 * image[..., 2]
elif method == "average":
grayscale = image.mean(dim=3)
elif method == "lightness":
grayscale = (torch.max(image, dim=3)[0] + torch.min(image, dim=3)[0]) / 2
grayscale = (1.0 - factor) * image + factor * grayscale.unsqueeze(-1).repeat(1, 1, 1, 3)
grayscale = torch.clamp(grayscale, 0, 1)
return(grayscale,)
class PixelOEPixelize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"downscale_mode": (["contrast", "bicubic", "nearest", "center", "k-centroid"],),
"target_size": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8 }),
"patch_size": ("INT", { "default": 16, "min": 4, "max": 32, "step": 2 }),
"thickness": ("INT", { "default": 2, "min": 1, "max": 16, "step": 1 }),
"color_matching": ("BOOLEAN", { "default": True }),
"upscale": ("BOOLEAN", { "default": True }),
#"contrast": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
#"saturation": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, downscale_mode, target_size, patch_size, thickness, color_matching, upscale):
from pixeloe.pixelize import pixelize
image = image.clone().mul(255).clamp(0, 255).byte().cpu().numpy()
output = []
for img in image:
img = pixelize(img,
mode=downscale_mode,
target_size=target_size,
patch_size=patch_size,
thickness=thickness,
contrast=1.0,
saturation=1.0,
color_matching=color_matching,
no_upscale=not upscale)
output.append(T.ToTensor()(img))
output = torch.stack(output, dim=0).permute([0, 2, 3, 1])
return(output,)
class ImagePosterize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"threshold": ("FLOAT", { "default": 0.50, "min": 0.00, "max": 1.00, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, threshold):
image = image.mean(dim=3, keepdim=True)
image = (image > threshold).float()
image = image.repeat(1, 1, 1, 3)
return(image,)
# From https://github.com/yoonsikp/pycubelut/blob/master/pycubelut.py (MIT license)
class ImageApplyLUT:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"lut_file": (folder_paths.get_filename_list("luts"),),
"gamma_correction": ("BOOLEAN", { "default": True }),
"clip_values": ("BOOLEAN", { "default": True }),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1 }),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
# TODO: check if we can do without numpy
def execute(self, image, lut_file, gamma_correction, clip_values, strength):
lut_file_path = folder_paths.get_full_path("luts", lut_file)
if not lut_file_path or not Path(lut_file_path).exists():
print(f"Could not find LUT file: {lut_file_path}")
return (image,)
from colour.io.luts.iridas_cube import read_LUT_IridasCube
device = image.device
lut = read_LUT_IridasCube(lut_file_path)
lut.name = lut_file
if clip_values:
if lut.domain[0].max() == lut.domain[0].min() and lut.domain[1].max() == lut.domain[1].min():
lut.table = np.clip(lut.table, lut.domain[0, 0], lut.domain[1, 0])
else:
if len(lut.table.shape) == 2: # 3x1D
for dim in range(3):
lut.table[:, dim] = np.clip(lut.table[:, dim], lut.domain[0, dim], lut.domain[1, dim])
else: # 3D
for dim in range(3):
lut.table[:, :, :, dim] = np.clip(lut.table[:, :, :, dim], lut.domain[0, dim], lut.domain[1, dim])
out = []
for img in image: # TODO: is this more resource efficient? should we use a batch instead?
lut_img = img.cpu().numpy().copy()
is_non_default_domain = not np.array_equal(lut.domain, np.array([[0., 0., 0.], [1., 1., 1.]]))
dom_scale = None
if is_non_default_domain:
dom_scale = lut.domain[1] - lut.domain[0]
lut_img = lut_img * dom_scale + lut.domain[0]
if gamma_correction:
lut_img = lut_img ** (1/2.2)
lut_img = lut.apply(lut_img)
if gamma_correction:
lut_img = lut_img ** (2.2)
if is_non_default_domain:
lut_img = (lut_img - lut.domain[0]) / dom_scale
lut_img = torch.from_numpy(lut_img).to(device)
if strength < 1.0:
lut_img = strength * lut_img + (1 - strength) * img
out.append(lut_img)
out = torch.stack(out)
return (out, )
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
class ImageCAS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"amount": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image processing"
FUNCTION = "execute"
def execute(self, image, amount):
epsilon = 1e-5
img = F.pad(image.permute([0,3,1,2]), pad=(1, 1, 1, 1))
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx + epsilon)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = output.clamp(0, 1)
#output = torch.nan_to_num(output)
output = output.permute([0,2,3,1])
return (output,)
class ImageSmartSharpen:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"noise_radius": ("INT", { "default": 7, "min": 1, "max": 25, "step": 1, }),
"preserve_edges": ("FLOAT", { "default": 0.75, "min": 0.0, "max": 1.0, "step": 0.05 }),
"sharpen": ("FLOAT", { "default": 5.0, "min": 0.0, "max": 25.0, "step": 0.5 }),
"ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1 }),
}}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image processing"
FUNCTION = "execute"
def execute(self, image, noise_radius, preserve_edges, sharpen, ratio):
import cv2
output = []
#diagonal = np.sqrt(image.shape[1]**2 + image.shape[2]**2)
if preserve_edges > 0:
preserve_edges = max(1 - preserve_edges, 0.05)
for img in image:
if noise_radius > 1:
sigma = 0.3 * ((noise_radius - 1) * 0.5 - 1) + 0.8 # this is what pytorch uses for blur
#sigma_color = preserve_edges * (diagonal / 2048)
blurred = cv2.bilateralFilter(img.cpu().numpy(), noise_radius, preserve_edges, sigma)
blurred = torch.from_numpy(blurred)
else:
blurred = img
if sharpen > 0:
sharpened = kornia.enhance.sharpness(img.permute(2,0,1), sharpen).permute(1,2,0)
else:
sharpened = img
img = ratio * sharpened + (1 - ratio) * blurred
img = torch.clamp(img, 0, 1)
output.append(img)
del blurred, sharpened
output = torch.stack(output)
return (output,)
class ExtractKeyframes:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"threshold": ("FLOAT", { "default": 0.85, "min": 0.00, "max": 1.00, "step": 0.01, }),
}
}
RETURN_TYPES = ("IMAGE", "STRING")
RETURN_NAMES = ("KEYFRAMES", "indexes")
FUNCTION = "execute"
CATEGORY = "essentials"
def execute(self, image, threshold):
window_size = 2
variations = torch.sum(torch.abs(image[1:] - image[:-1]), dim=[1, 2, 3])
#variations = torch.sum((image[1:] - image[:-1]) ** 2, dim=[1, 2, 3])
threshold = torch.quantile(variations.float(), threshold).item()
keyframes = []
for i in range(image.shape[0] - window_size + 1):
window = image[i:i + window_size]
variation = torch.sum(torch.abs(window[-1] - window[0])).item()
if variation > threshold:
keyframes.append(i + window_size - 1)
return (image[keyframes], ','.join(map(str, keyframes)),)
class ImageColorMatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"color_space": (["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],),
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
"device": (["auto", "cpu", "gpu"],),
"batch_size": ("INT", { "default": 0, "min": 0, "max": 1024, "step": 1, }),
},
"optional": {
"reference_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, reference, color_space, factor, device, batch_size, reference_mask=None):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
image = image.permute([0, 3, 1, 2])
reference = reference.permute([0, 3, 1, 2]).to(device)
# Ensure reference_mask is in the correct format and on the right device
if reference_mask is not None:
assert reference_mask.ndim == 3, f"Expected reference_mask to have 3 dimensions, but got {reference_mask.ndim}"
assert reference_mask.shape[0] == reference.shape[0], f"Frame count mismatch: reference_mask has {reference_mask.shape[0]} frames, but reference has {reference.shape[0]}"
# Reshape mask to (batch, 1, height, width)
reference_mask = reference_mask.unsqueeze(1).to(device)
# Ensure the mask is binary (0 or 1)
reference_mask = (reference_mask > 0.5).float()
# Ensure spatial dimensions match
if reference_mask.shape[2:] != reference.shape[2:]:
reference_mask = comfy.utils.common_upscale(
reference_mask,
reference.shape[3], reference.shape[2],
upscale_method='bicubic',
crop='center'
)
if batch_size == 0 or batch_size > image.shape[0]:
batch_size = image.shape[0]
if "LAB" == color_space:
reference = kornia.color.rgb_to_lab(reference)
elif "YCbCr" == color_space:
reference = kornia.color.rgb_to_ycbcr(reference)
elif "LUV" == color_space:
reference = kornia.color.rgb_to_luv(reference)
elif "YUV" == color_space:
reference = kornia.color.rgb_to_yuv(reference)
elif "XYZ" == color_space:
reference = kornia.color.rgb_to_xyz(reference)
reference_mean, reference_std = self.compute_mean_std(reference, reference_mask)
image_batch = torch.split(image, batch_size, dim=0)
output = []
for image in image_batch:
image = image.to(device)
if color_space == "LAB":
image = kornia.color.rgb_to_lab(image)
elif color_space == "YCbCr":
image = kornia.color.rgb_to_ycbcr(image)
elif color_space == "LUV":
image = kornia.color.rgb_to_luv(image)
elif color_space == "YUV":
image = kornia.color.rgb_to_yuv(image)
elif color_space == "XYZ":
image = kornia.color.rgb_to_xyz(image)
image_mean, image_std = self.compute_mean_std(image)
matched = torch.nan_to_num((image - image_mean) / image_std) * torch.nan_to_num(reference_std) + reference_mean
matched = factor * matched + (1 - factor) * image
if color_space == "LAB":
matched = kornia.color.lab_to_rgb(matched)
elif color_space == "YCbCr":
matched = kornia.color.ycbcr_to_rgb(matched)
elif color_space == "LUV":
matched = kornia.color.luv_to_rgb(matched)
elif color_space == "YUV":
matched = kornia.color.yuv_to_rgb(matched)
elif color_space == "XYZ":
matched = kornia.color.xyz_to_rgb(matched)
out = matched.permute([0, 2, 3, 1]).clamp(0, 1).to(comfy.model_management.intermediate_device())
output.append(out)
out = None
output = torch.cat(output, dim=0)
return (output,)
def compute_mean_std(self, tensor, mask=None):
if mask is not None:
# Apply mask to the tensor
masked_tensor = tensor * mask
# Calculate the sum of the mask for each channel
mask_sum = mask.sum(dim=[2, 3], keepdim=True)
# Avoid division by zero
mask_sum = torch.clamp(mask_sum, min=1e-6)
# Calculate mean and std only for masked area
mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum)
std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum))
else:
mean = tensor.mean(dim=[2, 3], keepdim=True)
std = tensor.std(dim=[2, 3], keepdim=True)
return mean, std
class ImageColorMatchAdobe(ImageColorMatch):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"color_space": (["RGB", "LAB"],),
"luminance_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
"color_intensity_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
"fade_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"neutralization_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"device": (["auto", "cpu", "gpu"],),
},
"optional": {
"reference_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def analyze_color_statistics(self, image, mask=None):
# Assuming image is in RGB format
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
if mask is not None:
# Ensure mask is binary and has the same spatial dimensions as the image
mask = F.interpolate(mask, size=image.shape[2:], mode='nearest')
mask = (mask > 0.5).float()
# Apply mask to each channel
l = l * mask
a = a * mask
b = b * mask
# Compute masked mean and std
num_pixels = mask.sum()
mean_l = (l * mask).sum() / num_pixels
mean_a = (a * mask).sum() / num_pixels
mean_b = (b * mask).sum() / num_pixels
std_l = torch.sqrt(((l - mean_l)**2 * mask).sum() / num_pixels)
var_ab = ((a - mean_a)**2 + (b - mean_b)**2) * mask
std_ab = torch.sqrt(var_ab.sum() / num_pixels)
else:
mean_l = l.mean()
std_l = l.std()
mean_a = a.mean()
mean_b = b.mean()
std_ab = torch.sqrt(a.var() + b.var())
return mean_l, std_l, mean_a, mean_b, std_ab
def apply_color_transformation(self, image, source_stats, dest_stats, L, C, N):
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
# Unpack statistics
src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats
dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats
# Adjust luminance
l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * L + src_mean_l
# Neutralize color cast
a = a - N * dest_mean_a
b = b - N * dest_mean_b
# Adjust color intensity
a_new = a * (src_std_ab / dest_std_ab) * C
b_new = b * (src_std_ab / dest_std_ab) * C
# Combine channels
lab_new = torch.cat([l_new, a_new, b_new], dim=1)
# Convert back to RGB
rgb_new = kornia.color.lab_to_rgb(lab_new)
return rgb_new
def execute(self, image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor, device, reference_mask=None):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
# Ensure image and reference are in the correct shape (B, C, H, W)
image = image.permute(0, 3, 1, 2).to(device)
reference = reference.permute(0, 3, 1, 2).to(device)
# Handle reference_mask (if provided)
if reference_mask is not None:
# Ensure reference_mask is 4D (B, 1, H, W)
if reference_mask.ndim == 2:
reference_mask = reference_mask.unsqueeze(0).unsqueeze(0)
elif reference_mask.ndim == 3:
reference_mask = reference_mask.unsqueeze(1)
reference_mask = reference_mask.to(device)
# Analyze color statistics
source_stats = self.analyze_color_statistics(reference, reference_mask)
dest_stats = self.analyze_color_statistics(image)
# Apply color transformation
transformed = self.apply_color_transformation(
image, source_stats, dest_stats,
luminance_factor, color_intensity_factor, neutralization_factor
)
# Apply fade factor
result = fade_factor * transformed + (1 - fade_factor) * image
# Convert back to (B, H, W, C) format and ensure values are in [0, 1] range
result = result.permute(0, 2, 3, 1).clamp(0, 1).to(comfy.model_management.intermediate_device())
return (result,)
class ImageHistogramMatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"method": (["pytorch", "skimage"],),
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, reference, method, factor, device):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
if "pytorch" in method:
from .histogram_matching import Histogram_Matching
image = image.permute([0, 3, 1, 2]).to(device)
reference = reference.permute([0, 3, 1, 2]).to(device)[0].unsqueeze(0)
image.requires_grad = True
reference.requires_grad = True
out = []
for i in image:
i = i.unsqueeze(0)
hm = Histogram_Matching(differentiable=True)
out.append(hm(i, reference))
out = torch.cat(out, dim=0)
out = factor * out + (1 - factor) * image
out = out.permute([0, 2, 3, 1]).clamp(0, 1)
else:
from skimage.exposure import match_histograms
out = torch.from_numpy(match_histograms(image.cpu().numpy(), reference.cpu().numpy(), channel_axis=3)).to(device)
out = factor * out + (1 - factor) * image.to(device)
return (out.to(comfy.model_management.intermediate_device()),)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageToDevice:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image, device):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
image = image.clone().to(device)
torch.cuda.empty_cache()
return (image,)
class GetImageSize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT", "INT", "INT",)
RETURN_NAMES = ("width", "height", "count")
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image):
return (image.shape[2], image.shape[1], image.shape[0])
class ImageRemoveAlpha:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image):
if image.shape[3] == 4:
image = image[..., :3]
return (image,)
class ImagePreviewFromLatent(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 1
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latent": ("LATENT",),
"vae": ("VAE", ),
"tile_size": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64})
}, "optional": {
"image": (["none"], {"image_upload": False}),
}, "hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
},
}
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
RETURN_NAMES = ("IMAGE", "MASK", "width", "height",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, latent, vae, tile_size, prompt=None, extra_pnginfo=None, image=None, filename_prefix="ComfyUI"):
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
ui = None
if image.startswith("clipspace"):
image_path = folder_paths.get_annotated_filepath(image)
if not os.path.exists(image_path):
raise ValueError(f"Clipspace image does not exist anymore, select 'none' in the image field.")
img = pillow(Image.open, image_path)
img = pillow(ImageOps.exif_transpose, img)
if img.mode == "I":
img = img.point(lambda i: i * (1 / 255))
image = img.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if "A" in img.getbands():
mask = np.array(img.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
ui = {
"filename": os.path.basename(image_path),
"subfolder": os.path.dirname(image_path),
"type": "temp",
}
else:
if tile_size > 0:
tile_size = max(tile_size, 320)
image = vae.decode_tiled(latent["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, )
else:
image = vae.decode(latent["samples"])
ui = self.save_images(image, filename_prefix, prompt, extra_pnginfo)
out = {**ui, "result": (image, mask, image.shape[2], image.shape[1],)}
return out
class NoiseFromImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"noise_strenght": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"noise_size": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"color_noise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_scale_diff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"saturation": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"blur": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1 }),
},
"optional": {
"noise_mask": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image, noise_size, color_noise, mask_strength, mask_scale_diff, mask_contrast, noise_strenght, saturation, contrast, blur, noise_mask=None):
torch.manual_seed(0)
elastic_alpha = max(image.shape[1], image.shape[2])# * noise_size
elastic_sigma = elastic_alpha / 400 * noise_size
blur_size = int(6 * blur+1)
if blur_size % 2 == 0:
blur_size+= 1
if noise_mask is None:
noise_mask = image
# increase contrast of the mask
if mask_contrast != 1:
noise_mask = T.ColorJitter(contrast=(mask_contrast,mask_contrast))(noise_mask.permute([0, 3, 1, 2])).permute([0, 2, 3, 1])
# Ensure noise mask is the same size as the image
if noise_mask.shape[1:] != image.shape[1:]:
noise_mask = F.interpolate(noise_mask.permute([0, 3, 1, 2]), size=(image.shape[1], image.shape[2]), mode='bicubic', align_corners=False)
noise_mask = noise_mask.permute([0, 2, 3, 1])
# Ensure we have the same number of masks and images
if noise_mask.shape[0] > image.shape[0]:
noise_mask = noise_mask[:image.shape[0]]
else:
noise_mask = torch.cat((noise_mask, noise_mask[-1:].repeat((image.shape[0]-noise_mask.shape[0], 1, 1, 1))), dim=0)
# Convert mask to grayscale mask
noise_mask = noise_mask.mean(dim=3).unsqueeze(-1)
# add color noise
imgs = image.clone().permute([0, 3, 1, 2])
if color_noise > 0:
color_noise = torch.normal(torch.zeros_like(imgs), std=color_noise)
color_noise *= (imgs - imgs.min()) / (imgs.max() - imgs.min())
imgs = imgs + color_noise
imgs = imgs.clamp(0, 1)
# create fine and coarse noise
fine_noise = []
for n in imgs:
avg_color = n.mean(dim=[1,2])
tmp_noise = T.ElasticTransform(alpha=elastic_alpha, sigma=elastic_sigma, fill=avg_color.tolist())(n)
if blur > 0:
tmp_noise = T.GaussianBlur(blur_size, blur)(tmp_noise)
tmp_noise = T.ColorJitter(contrast=(contrast,contrast), saturation=(saturation,saturation))(tmp_noise)
fine_noise.append(tmp_noise)
imgs = None
del imgs
fine_noise = torch.stack(fine_noise, dim=0)
fine_noise = fine_noise.permute([0, 2, 3, 1])
#fine_noise = torch.stack(fine_noise, dim=0)
#fine_noise = pb(fine_noise)
mask_scale_diff = min(mask_scale_diff, 0.99)
if mask_scale_diff > 0:
coarse_noise = F.interpolate(fine_noise.permute([0, 3, 1, 2]), scale_factor=1-mask_scale_diff, mode='area')
coarse_noise = F.interpolate(coarse_noise, size=(fine_noise.shape[1], fine_noise.shape[2]), mode='bilinear', align_corners=False)
coarse_noise = coarse_noise.permute([0, 2, 3, 1])
else:
coarse_noise = fine_noise
output = (1 - noise_mask) * coarse_noise + noise_mask * fine_noise
if mask_strength < 1:
noise_mask = noise_mask.pow(mask_strength)
noise_mask = torch.nan_to_num(noise_mask).clamp(0, 1)
output = noise_mask * output + (1 - noise_mask) * image
# apply noise to image
output = output * noise_strenght + image * (1 - noise_strenght)
output = output.clamp(0, 1)
return (output, )
IMAGE_CLASS_MAPPINGS = {
# Image analysis
"ImageEnhanceDifference+": ImageEnhanceDifference,
# Image batch
"ImageBatchMultiple+": ImageBatchMultiple,
"ImageExpandBatch+": ImageExpandBatch,
"ImageFromBatch+": ImageFromBatch,
"ImageListToBatch+": ImageListToBatch,
"ImageBatchToList+": ImageBatchToList,
# Image manipulation
"ImageCompositeFromMaskBatch+": ImageCompositeFromMaskBatch,
"ImageComposite+": ImageComposite,
"ImageCrop+": ImageCrop,
"ImageFlip+": ImageFlip,
"ImageRandomTransform+": ImageRandomTransform,
"ImageRemoveAlpha+": ImageRemoveAlpha,
"ImageRemoveBackground+": ImageRemoveBackground,
"ImageResize+": ImageResize,
"ImageSeamCarving+": ImageSeamCarving,
"ImageTile+": ImageTile,
"ImageUntile+": ImageUntile,
"RemBGSession+": RemBGSession,
"TransparentBGSession+": TransparentBGSession,
# Image processing
"ImageApplyLUT+": ImageApplyLUT,
"ImageCASharpening+": ImageCAS,
"ImageDesaturate+": ImageDesaturate,
"PixelOEPixelize+": PixelOEPixelize,
"ImagePosterize+": ImagePosterize,
"ImageColorMatch+": ImageColorMatch,
"ImageColorMatchAdobe+": ImageColorMatchAdobe,
"ImageHistogramMatch+": ImageHistogramMatch,
"ImageSmartSharpen+": ImageSmartSharpen,
# Utilities
"GetImageSize+": GetImageSize,
"ImageToDevice+": ImageToDevice,
"ImagePreviewFromLatent+": ImagePreviewFromLatent,
"NoiseFromImage+": NoiseFromImage,
#"ExtractKeyframes+": ExtractKeyframes,
}
IMAGE_NAME_MAPPINGS = {
# Image analysis
"ImageEnhanceDifference+": "π§ Image Enhance Difference",
# Image batch
"ImageBatchMultiple+": "π§ Images Batch Multiple",
"ImageExpandBatch+": "π§ Image Expand Batch",
"ImageFromBatch+": "π§ Image From Batch",
"ImageListToBatch+": "π§ Image List To Batch",
"ImageBatchToList+": "π§ Image Batch To List",
# Image manipulation
"ImageCompositeFromMaskBatch+": "π§ Image Composite From Mask Batch",
"ImageComposite+": "π§ Image Composite",
"ImageCrop+": "π§ Image Crop",
"ImageFlip+": "π§ Image Flip",
"ImageRandomTransform+": "π§ Image Random Transform",
"ImageRemoveAlpha+": "π§ Image Remove Alpha",
"ImageRemoveBackground+": "π§ Image Remove Background",
"ImageResize+": "π§ Image Resize",
"ImageSeamCarving+": "π§ Image Seam Carving",
"ImageTile+": "π§ Image Tile",
"ImageUntile+": "π§ Image Untile",
"RemBGSession+": "π§ RemBG Session",
"TransparentBGSession+": "π§ InSPyReNet TransparentBG",
# Image processing
"ImageApplyLUT+": "π§ Image Apply LUT",
"ImageCASharpening+": "π§ Image Contrast Adaptive Sharpening",
"ImageDesaturate+": "π§ Image Desaturate",
"PixelOEPixelize+": "π§ Pixelize",
"ImagePosterize+": "π§ Image Posterize",
"ImageColorMatch+": "π§ Image Color Match",
"ImageColorMatchAdobe+": "π§ Image Color Match Adobe",
"ImageHistogramMatch+": "π§ Image Histogram Match",
"ImageSmartSharpen+": "π§ Image Smart Sharpen",
# Utilities
"GetImageSize+": "π§ Get Image Size",
"ImageToDevice+": "π§ Image To Device",
"ImagePreviewFromLatent+": "π§ Image Preview From Latent",
"NoiseFromImage+": "π§ Noise From Image",
}
|