File size: 8,541 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys, os
from .utils import here, define_preprocessor_inputs, INPUT
from pathlib import Path
import traceback
import importlib
from .log import log, blue_text, cyan_text, get_summary, get_label
from .hint_image_enchance import NODE_CLASS_MAPPINGS as HIE_NODE_CLASS_MAPPINGS
from .hint_image_enchance import NODE_DISPLAY_NAME_MAPPINGS as HIE_NODE_DISPLAY_NAME_MAPPINGS
#Ref: https://github.com/comfyanonymous/ComfyUI/blob/76d53c4622fc06372975ed2a43ad345935b8a551/nodes.py#L17
sys.path.insert(0, str(Path(here, "src").resolve()))
for pkg_name in ["custom_controlnet_aux", "custom_mmpkg"]:
    sys.path.append(str(Path(here, "src", pkg_name).resolve()))

#Enable CPU fallback for ops not being supported by MPS like upsample_bicubic2d.out
#https://github.com/pytorch/pytorch/issues/77764
#https://github.com/Fannovel16/comfyui_controlnet_aux/issues/2#issuecomment-1763579485
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = os.getenv("PYTORCH_ENABLE_MPS_FALLBACK", '1')


def load_nodes():
    shorted_errors = []
    full_error_messages = []
    node_class_mappings = {}
    node_display_name_mappings = {}

    for filename in (here / "node_wrappers").iterdir():
        module_name = filename.stem
        if module_name.startswith('.'): continue #Skip hidden files created by the OS (e.g. [.DS_Store](https://en.wikipedia.org/wiki/.DS_Store))
        try:
            module = importlib.import_module(
                f".node_wrappers.{module_name}", package=__package__
            )
            node_class_mappings.update(getattr(module, "NODE_CLASS_MAPPINGS"))
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS"):
                node_display_name_mappings.update(getattr(module, "NODE_DISPLAY_NAME_MAPPINGS"))

            log.debug(f"Imported {module_name} nodes")

        except AttributeError:
            pass  # wip nodes
        except Exception:
            error_message = traceback.format_exc()
            full_error_messages.append(error_message)
            error_message = error_message.splitlines()[-1]
            shorted_errors.append(
                f"Failed to import module {module_name} because {error_message}"
            )
    
    if len(shorted_errors) > 0:
        full_err_log = '\n\n'.join(full_error_messages)
        print(f"\n\nFull error log from comfyui_controlnet_aux: \n{full_err_log}\n\n")
        log.info(
            f"Some nodes failed to load:\n\t"
            + "\n\t".join(shorted_errors)
            + "\n\n"
            + "Check that you properly installed the dependencies.\n"
            + "If you think this is a bug, please report it on the github page (https://github.com/Fannovel16/comfyui_controlnet_aux/issues)"
        )
    return node_class_mappings, node_display_name_mappings

AUX_NODE_MAPPINGS, AUX_DISPLAY_NAME_MAPPINGS = load_nodes()

#For nodes not mapping image to image or has special requirements
AIO_NOT_SUPPORTED = ["InpaintPreprocessor", "MeshGraphormer+ImpactDetector-DepthMapPreprocessor", "DiffusionEdge_Preprocessor"]
AIO_NOT_SUPPORTED += ["SavePoseKpsAsJsonFile", "FacialPartColoringFromPoseKps", "UpperBodyTrackingFromPoseKps", "RenderPeopleKps", "RenderAnimalKps"]
AIO_NOT_SUPPORTED += ["Unimatch_OptFlowPreprocessor", "MaskOptFlow"]

def preprocessor_options():
    auxs = list(AUX_NODE_MAPPINGS.keys())
    auxs.insert(0, "none")
    for name in AIO_NOT_SUPPORTED:
        if name in auxs:
            auxs.remove(name)
    return auxs


PREPROCESSOR_OPTIONS = preprocessor_options()

class AIO_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            preprocessor=INPUT.COMBO(PREPROCESSOR_OPTIONS, default="none"),
            resolution=INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"

    def execute(self, preprocessor, image, resolution=512):
        if preprocessor == "none":
            return (image, )
        else:
            aux_class = AUX_NODE_MAPPINGS[preprocessor]
            input_types = aux_class.INPUT_TYPES()
            input_types = {
                **input_types["required"],
                **(input_types["optional"] if "optional" in input_types else {})
            }
            params = {}
            for name, input_type in input_types.items():
                if name == "image":
                    params[name] = image
                    continue

                if name == "resolution":
                    params[name] = resolution
                    continue

                if len(input_type) == 2 and ("default" in input_type[1]):
                    params[name] = input_type[1]["default"]
                    continue

                default_values = { "INT": 0, "FLOAT": 0.0 }
                if input_type[0] in default_values:
                    params[name] = default_values[input_type[0]]

            return getattr(aux_class(), aux_class.FUNCTION)(**params)

class ControlNetAuxSimpleAddText:
    @classmethod
    def INPUT_TYPES(s):
        return dict(
            required=dict(image=INPUT.IMAGE(), text=INPUT.STRING())
        )
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"
    CATEGORY = "ControlNet Preprocessors"
    def execute(self, image, text):
        from PIL import Image, ImageDraw, ImageFont
        import numpy as np
        import torch

        font = ImageFont.truetype(str((here / "NotoSans-Regular.ttf").resolve()), 40)
        img = Image.fromarray(image[0].cpu().numpy().__mul__(255.).astype(np.uint8))
        ImageDraw.Draw(img).text((0,0), text, fill=(0,255,0), font=font)
        return (torch.from_numpy(np.array(img)).unsqueeze(0) / 255.,)

class ExecuteAllControlNetPreprocessors:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"

    def execute(self, image, resolution=512):
        try:
            from comfy_execution.graph_utils import GraphBuilder
        except:
            raise RuntimeError("ExecuteAllControlNetPreprocessor requries [Execution Model Inversion](https://github.com/comfyanonymous/ComfyUI/commit/5cfe38). Update ComfyUI/SwarmUI to get this feature")
        
        graph = GraphBuilder()
        curr_outputs = []
        for preprocc in PREPROCESSOR_OPTIONS:
            preprocc_node = graph.node("AIO_Preprocessor", preprocessor=preprocc, image=image, resolution=resolution)
            hint_img = preprocc_node.out(0)
            add_text_node = graph.node("ControlNetAuxSimpleAddText", image=hint_img, text=preprocc)
            curr_outputs.append(add_text_node.out(0))
        
        while len(curr_outputs) > 1:
            _outputs = []
            for i in range(0, len(curr_outputs), 2):
                if i+1 < len(curr_outputs):
                    image_batch = graph.node("ImageBatch", image1=curr_outputs[i], image2=curr_outputs[i+1])
                    _outputs.append(image_batch.out(0))
                else:
                    _outputs.append(curr_outputs[i])
            curr_outputs = _outputs

        return {
            "result": (curr_outputs[0],),
            "expand": graph.finalize(),
        }

class ControlNetPreprocessorSelector:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "preprocessor": (PREPROCESSOR_OPTIONS,),
            }
        }

    RETURN_TYPES = (PREPROCESSOR_OPTIONS,)
    RETURN_NAMES = ("preprocessor",)
    FUNCTION = "get_preprocessor"

    CATEGORY = "ControlNet Preprocessors"

    def get_preprocessor(self, preprocessor: str):
        return (preprocessor,)


NODE_CLASS_MAPPINGS = {
    **AUX_NODE_MAPPINGS,
    "AIO_Preprocessor": AIO_Preprocessor,
    "ControlNetPreprocessorSelector": ControlNetPreprocessorSelector,
    **HIE_NODE_CLASS_MAPPINGS,
    "ExecuteAllControlNetPreprocessors": ExecuteAllControlNetPreprocessors,
    "ControlNetAuxSimpleAddText": ControlNetAuxSimpleAddText
}

NODE_DISPLAY_NAME_MAPPINGS = {
    **AUX_DISPLAY_NAME_MAPPINGS,
    "AIO_Preprocessor": "AIO Aux Preprocessor",
    "ControlNetPreprocessorSelector": "Preprocessor Selector",
    **HIE_NODE_DISPLAY_NAME_MAPPINGS,
    "ExecuteAllControlNetPreprocessors": "Execute All ControlNet Preprocessors"
}