Spaces:
Running
Running
File size: 8,541 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import sys, os
from .utils import here, define_preprocessor_inputs, INPUT
from pathlib import Path
import traceback
import importlib
from .log import log, blue_text, cyan_text, get_summary, get_label
from .hint_image_enchance import NODE_CLASS_MAPPINGS as HIE_NODE_CLASS_MAPPINGS
from .hint_image_enchance import NODE_DISPLAY_NAME_MAPPINGS as HIE_NODE_DISPLAY_NAME_MAPPINGS
#Ref: https://github.com/comfyanonymous/ComfyUI/blob/76d53c4622fc06372975ed2a43ad345935b8a551/nodes.py#L17
sys.path.insert(0, str(Path(here, "src").resolve()))
for pkg_name in ["custom_controlnet_aux", "custom_mmpkg"]:
sys.path.append(str(Path(here, "src", pkg_name).resolve()))
#Enable CPU fallback for ops not being supported by MPS like upsample_bicubic2d.out
#https://github.com/pytorch/pytorch/issues/77764
#https://github.com/Fannovel16/comfyui_controlnet_aux/issues/2#issuecomment-1763579485
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = os.getenv("PYTORCH_ENABLE_MPS_FALLBACK", '1')
def load_nodes():
shorted_errors = []
full_error_messages = []
node_class_mappings = {}
node_display_name_mappings = {}
for filename in (here / "node_wrappers").iterdir():
module_name = filename.stem
if module_name.startswith('.'): continue #Skip hidden files created by the OS (e.g. [.DS_Store](https://en.wikipedia.org/wiki/.DS_Store))
try:
module = importlib.import_module(
f".node_wrappers.{module_name}", package=__package__
)
node_class_mappings.update(getattr(module, "NODE_CLASS_MAPPINGS"))
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS"):
node_display_name_mappings.update(getattr(module, "NODE_DISPLAY_NAME_MAPPINGS"))
log.debug(f"Imported {module_name} nodes")
except AttributeError:
pass # wip nodes
except Exception:
error_message = traceback.format_exc()
full_error_messages.append(error_message)
error_message = error_message.splitlines()[-1]
shorted_errors.append(
f"Failed to import module {module_name} because {error_message}"
)
if len(shorted_errors) > 0:
full_err_log = '\n\n'.join(full_error_messages)
print(f"\n\nFull error log from comfyui_controlnet_aux: \n{full_err_log}\n\n")
log.info(
f"Some nodes failed to load:\n\t"
+ "\n\t".join(shorted_errors)
+ "\n\n"
+ "Check that you properly installed the dependencies.\n"
+ "If you think this is a bug, please report it on the github page (https://github.com/Fannovel16/comfyui_controlnet_aux/issues)"
)
return node_class_mappings, node_display_name_mappings
AUX_NODE_MAPPINGS, AUX_DISPLAY_NAME_MAPPINGS = load_nodes()
#For nodes not mapping image to image or has special requirements
AIO_NOT_SUPPORTED = ["InpaintPreprocessor", "MeshGraphormer+ImpactDetector-DepthMapPreprocessor", "DiffusionEdge_Preprocessor"]
AIO_NOT_SUPPORTED += ["SavePoseKpsAsJsonFile", "FacialPartColoringFromPoseKps", "UpperBodyTrackingFromPoseKps", "RenderPeopleKps", "RenderAnimalKps"]
AIO_NOT_SUPPORTED += ["Unimatch_OptFlowPreprocessor", "MaskOptFlow"]
def preprocessor_options():
auxs = list(AUX_NODE_MAPPINGS.keys())
auxs.insert(0, "none")
for name in AIO_NOT_SUPPORTED:
if name in auxs:
auxs.remove(name)
return auxs
PREPROCESSOR_OPTIONS = preprocessor_options()
class AIO_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
preprocessor=INPUT.COMBO(PREPROCESSOR_OPTIONS, default="none"),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, preprocessor, image, resolution=512):
if preprocessor == "none":
return (image, )
else:
aux_class = AUX_NODE_MAPPINGS[preprocessor]
input_types = aux_class.INPUT_TYPES()
input_types = {
**input_types["required"],
**(input_types["optional"] if "optional" in input_types else {})
}
params = {}
for name, input_type in input_types.items():
if name == "image":
params[name] = image
continue
if name == "resolution":
params[name] = resolution
continue
if len(input_type) == 2 and ("default" in input_type[1]):
params[name] = input_type[1]["default"]
continue
default_values = { "INT": 0, "FLOAT": 0.0 }
if input_type[0] in default_values:
params[name] = default_values[input_type[0]]
return getattr(aux_class(), aux_class.FUNCTION)(**params)
class ControlNetAuxSimpleAddText:
@classmethod
def INPUT_TYPES(s):
return dict(
required=dict(image=INPUT.IMAGE(), text=INPUT.STRING())
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, image, text):
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import torch
font = ImageFont.truetype(str((here / "NotoSans-Regular.ttf").resolve()), 40)
img = Image.fromarray(image[0].cpu().numpy().__mul__(255.).astype(np.uint8))
ImageDraw.Draw(img).text((0,0), text, fill=(0,255,0), font=font)
return (torch.from_numpy(np.array(img)).unsqueeze(0) / 255.,)
class ExecuteAllControlNetPreprocessors:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, image, resolution=512):
try:
from comfy_execution.graph_utils import GraphBuilder
except:
raise RuntimeError("ExecuteAllControlNetPreprocessor requries [Execution Model Inversion](https://github.com/comfyanonymous/ComfyUI/commit/5cfe38). Update ComfyUI/SwarmUI to get this feature")
graph = GraphBuilder()
curr_outputs = []
for preprocc in PREPROCESSOR_OPTIONS:
preprocc_node = graph.node("AIO_Preprocessor", preprocessor=preprocc, image=image, resolution=resolution)
hint_img = preprocc_node.out(0)
add_text_node = graph.node("ControlNetAuxSimpleAddText", image=hint_img, text=preprocc)
curr_outputs.append(add_text_node.out(0))
while len(curr_outputs) > 1:
_outputs = []
for i in range(0, len(curr_outputs), 2):
if i+1 < len(curr_outputs):
image_batch = graph.node("ImageBatch", image1=curr_outputs[i], image2=curr_outputs[i+1])
_outputs.append(image_batch.out(0))
else:
_outputs.append(curr_outputs[i])
curr_outputs = _outputs
return {
"result": (curr_outputs[0],),
"expand": graph.finalize(),
}
class ControlNetPreprocessorSelector:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"preprocessor": (PREPROCESSOR_OPTIONS,),
}
}
RETURN_TYPES = (PREPROCESSOR_OPTIONS,)
RETURN_NAMES = ("preprocessor",)
FUNCTION = "get_preprocessor"
CATEGORY = "ControlNet Preprocessors"
def get_preprocessor(self, preprocessor: str):
return (preprocessor,)
NODE_CLASS_MAPPINGS = {
**AUX_NODE_MAPPINGS,
"AIO_Preprocessor": AIO_Preprocessor,
"ControlNetPreprocessorSelector": ControlNetPreprocessorSelector,
**HIE_NODE_CLASS_MAPPINGS,
"ExecuteAllControlNetPreprocessors": ExecuteAllControlNetPreprocessors,
"ControlNetAuxSimpleAddText": ControlNetAuxSimpleAddText
}
NODE_DISPLAY_NAME_MAPPINGS = {
**AUX_DISPLAY_NAME_MAPPINGS,
"AIO_Preprocessor": "AIO Aux Preprocessor",
"ControlNetPreprocessorSelector": "Preprocessor Selector",
**HIE_NODE_DISPLAY_NAME_MAPPINGS,
"ExecuteAllControlNetPreprocessors": "Execute All ControlNet Preprocessors"
}
|