File size: 17,170 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
from PIL import ImageOps
from impact.utils import *
import latent_preview


# NOTE: this should not be `from . import core`.
# I don't know why but... 'from .' and 'from impact' refer to different core modules.
# This separates global variables of the core module and breaks the preview bridge.
from impact import core
# <--
import random


class PreviewBridge:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "images": ("IMAGE",),
                    "image": ("STRING", {"default": ""}),
                    },
                "optional": {
                    "block": ("BOOLEAN", {"default": False, "label_on": "if_empty_mask", "label_off": "never", "tooltip": "is_empty_mask: If the mask is empty, the execution is stopped.\nnever: The execution is never stopped."}),
                    "restore_mask": (["never", "always", "if_same_size"], {"tooltip": "if_same_size: If the changed input image is the same size as the previous image, restore using the last saved mask\nalways: Whenever the input image changes, always restore using the last saved mask\nnever: Do not restore the mask.\n`restore_mask` has higher priority than `block`"}),
                    },
                "hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ("IMAGE", "MASK", )

    FUNCTION = "doit"

    OUTPUT_NODE = True

    CATEGORY = "ImpactPack/Util"

    DESCRIPTION = "This is a feature that allows you to edit and send a Mask over a image.\nIf the block is set to 'is_empty_mask', the execution is stopped when the mask is empty."

    def __init__(self):
        super().__init__()
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prev_hash = None

    @staticmethod
    def load_image(pb_id):
        is_fail = False
        if pb_id not in core.preview_bridge_image_id_map:
            is_fail = True

        image_path, ui_item = core.preview_bridge_image_id_map[pb_id]

        if not os.path.isfile(image_path):
            is_fail = True

        if not is_fail:
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]

            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
        else:
            image = empty_pil_tensor()
            mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
            ui_item = {
                "filename": 'empty.png',
                "subfolder": '',
                "type": 'temp'
            }

        return image, mask.unsqueeze(0), ui_item

    def doit(self, images, image, unique_id, block=False, restore_mask="never", prompt=None, extra_pnginfo=None):
        need_refresh = False

        if unique_id not in core.preview_bridge_cache:
            need_refresh = True

        elif core.preview_bridge_cache[unique_id][0] is not images:
            need_refresh = True

        if not need_refresh:
            pixels, mask, path_item = PreviewBridge.load_image(image)
            image = [path_item]
        else:
            if restore_mask != "never":
                mask = core.preview_bridge_last_mask_cache.get(unique_id)
                if mask is None or (restore_mask != "always" and mask.shape[1:] != images.shape[1:3]):
                    mask = None
            else:
                mask = None

            if mask is None:
                mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
                res = nodes.PreviewImage().save_images(images, filename_prefix="PreviewBridge/PB-", prompt=prompt, extra_pnginfo=extra_pnginfo)
            else:
                masked_images = tensor_convert_rgba(images)
                resized_mask = resize_mask(mask, (images.shape[1], images.shape[2])).unsqueeze(3)
                resized_mask = 1 - resized_mask
                tensor_putalpha(masked_images, resized_mask)
                res = nodes.PreviewImage().save_images(masked_images, filename_prefix="PreviewBridge/PB-", prompt=prompt, extra_pnginfo=extra_pnginfo)

            image2 = res['ui']['images']
            pixels = images

            path = os.path.join(folder_paths.get_temp_directory(), 'PreviewBridge', image2[0]['filename'])
            core.set_previewbridge_image(unique_id, path, image2[0])
            core.preview_bridge_image_id_map[image] = (path, image2[0])
            core.preview_bridge_image_name_map[unique_id, path] = (image, image2[0])
            core.preview_bridge_cache[unique_id] = (images, image2)

            image = image2

        is_empty_mask = torch.all(mask == 0)

        if block and is_empty_mask and core.is_execution_model_version_supported():
            from comfy_execution.graph import ExecutionBlocker
            result = ExecutionBlocker(None), ExecutionBlocker(None)
        elif block and is_empty_mask:
            print(f"[Impact Pack] PreviewBridge: ComfyUI is outdated - blocking feature is disabled.")
            result = pixels, mask
        else:
            result = pixels, mask

        if not is_empty_mask:
            core.preview_bridge_last_mask_cache[unique_id] = mask

        return {
            "ui": {"images": image},
            "result": result,
        }


def decode_latent(latent, preview_method, vae_opt=None):
    if vae_opt is not None:
        image = nodes.VAEDecode().decode(vae_opt, latent)[0]
        return image

    from comfy.cli_args import LatentPreviewMethod
    import comfy.latent_formats as latent_formats

    if preview_method.startswith("TAE"):
        decoder_name = None

        if preview_method == "TAESD15":
            decoder_name = "taesd"
        elif preview_method == 'TAESDXL':
            decoder_name = "taesdxl"
        elif preview_method == 'TAESD3':
            decoder_name = "taesd3"
        elif preview_method == 'TAEF1':
            decoder_name = "taef1"

        if decoder_name:
            vae = nodes.VAELoader().load_vae(decoder_name)[0]
            image = nodes.VAEDecode().decode(vae, latent)[0]
            return image

    if preview_method == "Latent2RGB-SD15":
        latent_format = latent_formats.SD15()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-SDXL":
        latent_format = latent_formats.SDXL()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-SD3":
        latent_format = latent_formats.SD3()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-SD-X4":
        latent_format = latent_formats.SD_X4()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-Playground-2.5":
        latent_format = latent_formats.SDXL_Playground_2_5()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-SC-Prior":
        latent_format = latent_formats.SC_Prior()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-SC-B":
        latent_format = latent_formats.SC_B()
        method = LatentPreviewMethod.Latent2RGB
    elif preview_method == "Latent2RGB-FLUX.1":
        latent_format = latent_formats.Flux()
        method = LatentPreviewMethod.Latent2RGB
    else:
        print(f"[Impact Pack] PreviewBridgeLatent: '{preview_method}' is unsupported preview method.")
        latent_format = latent_formats.SD15()
        method = LatentPreviewMethod.Latent2RGB

    previewer = core.get_previewer("cpu", latent_format=latent_format, force=True, method=method)
    samples = latent_format.process_in(latent['samples'])

    pil_image = previewer.decode_latent_to_preview(samples)
    pixels_size = pil_image.size[0]*8, pil_image.size[1]*8
    resized_image = pil_image.resize(pixels_size, resample=LANCZOS)

    return to_tensor(resized_image).unsqueeze(0)


class PreviewBridgeLatent:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "latent": ("LATENT",),
                    "image": ("STRING", {"default": ""}),
                    "preview_method": (["Latent2RGB-FLUX.1",
                                        "Latent2RGB-SDXL", "Latent2RGB-SD15", "Latent2RGB-SD3",
                                        "Latent2RGB-SD-X4", "Latent2RGB-Playground-2.5",
                                        "Latent2RGB-SC-Prior", "Latent2RGB-SC-B",
                                        "TAEF1", "TAESDXL", "TAESD15", "TAESD3"],),
                    },
                "optional": {
                    "vae_opt": ("VAE", ),
                    "block": ("BOOLEAN", {"default": False, "label_on": "if_empty_mask", "label_off": "never", "tooltip": "is_empty_mask: If the mask is empty, the execution is stopped.\nnever: The execution is never stopped. Instead, it returns a white mask."}),
                    "restore_mask": (["never", "always", "if_same_size"], {"tooltip": "if_same_size: If the changed input latent is the same size as the previous latent, restore using the last saved mask\nalways: Whenever the input latent changes, always restore using the last saved mask\nnever: Do not restore the mask.\n`restore_mask` has higher priority than `block`\nIf the input latent already has a mask, do not restore mask."}),
                },
                "hidden": {"unique_id": "UNIQUE_ID", "prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ("LATENT", "MASK", )

    FUNCTION = "doit"

    OUTPUT_NODE = True

    CATEGORY = "ImpactPack/Util"

    DESCRIPTION = "This is a feature that allows you to edit and send a Mask over a latent image.\nIf the block is set to 'is_empty_mask', the execution is stopped when the mask is empty."

    def __init__(self):
        super().__init__()
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prev_hash = None
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))

    @staticmethod
    def load_image(pb_id):
        is_fail = False
        if pb_id not in core.preview_bridge_image_id_map:
            is_fail = True

        image_path, ui_item = core.preview_bridge_image_id_map[pb_id]

        if not os.path.isfile(image_path):
            is_fail = True

        if not is_fail:
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]

            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = None
        else:
            image = empty_pil_tensor()
            mask = None
            ui_item = {
                "filename": 'empty.png',
                "subfolder": '',
                "type": 'temp'
            }

        return image, mask, ui_item

    def doit(self, latent, image, preview_method, vae_opt=None, block=False, unique_id=None, restore_mask='never', prompt=None, extra_pnginfo=None):
        latent_channels = latent['samples'].shape[1]
        preview_method_channels = 16 if 'SD3' in preview_method or 'SC-Prior' in preview_method or 'FLUX.1' in preview_method or 'TAEF1' == preview_method else 4

        if vae_opt is None and latent_channels != preview_method_channels:
            print(f"[PreviewBridgeLatent] The version of latent is not compatible with preview_method.\nSD3, SD1/SD2, SDXL, SC-Prior, SC-B and FLUX.1 are not compatible with each other.")
            raise Exception("The version of latent is not compatible with preview_method.<BR>SD3, SD1/SD2, SDXL, SC-Prior, SC-B and FLUX.1 are not compatible with each other.")

        need_refresh = False

        if unique_id not in core.preview_bridge_cache:
            need_refresh = True

        elif (core.preview_bridge_cache[unique_id][0] is not latent
              or (vae_opt is None and core.preview_bridge_cache[unique_id][2] is not None)
              or (vae_opt is None and core.preview_bridge_cache[unique_id][1] != preview_method)
              or (vae_opt is not None and core.preview_bridge_cache[unique_id][2] is not vae_opt)):
            need_refresh = True

        if not need_refresh:
            pixels, mask, path_item = PreviewBridge.load_image(image)

            if mask is None:
                mask = torch.ones(latent['samples'].shape[2:], dtype=torch.float32, device="cpu").unsqueeze(0)
                if 'noise_mask' in latent:
                    res_latent = latent.copy()
                    del res_latent['noise_mask']
                else:
                    res_latent = latent

                is_empty_mask = True
            else:
                res_latent = latent.copy()
                res_latent['noise_mask'] = mask

                is_empty_mask = torch.all(mask == 1)

            res_image = [path_item]
        else:
            decoded_image = decode_latent(latent, preview_method, vae_opt)

            if 'noise_mask' in latent:
                mask = latent['noise_mask'].squeeze(0)  # 4D mask -> 3D mask

                decoded_pil = to_pil(decoded_image)

                inverted_mask = 1 - mask  # invert
                resized_mask = resize_mask(inverted_mask, (decoded_image.shape[1], decoded_image.shape[2]))
                result_pil = apply_mask_alpha_to_pil(decoded_pil, resized_mask)

                full_output_folder, filename, counter, _, _ = folder_paths.get_save_image_path("PreviewBridge/PBL-"+self.prefix_append, folder_paths.get_temp_directory(), result_pil.size[0], result_pil.size[1])
                file = f"{filename}_{counter}.png"
                result_pil.save(os.path.join(full_output_folder, file), compress_level=4)
                res_image = [{
                                'filename': file,
                                'subfolder': 'PreviewBridge',
                                'type': 'temp',
                            }]

                is_empty_mask = False
            else:
                if restore_mask != "never":
                    mask = core.preview_bridge_last_mask_cache.get(unique_id)
                    if mask is None or (restore_mask != "always" and mask.shape[1:] != decoded_image.shape[1:3]):
                        mask = None
                else:
                    mask = None

                if mask is None:
                    mask = torch.ones(latent['samples'].shape[2:], dtype=torch.float32, device="cpu").unsqueeze(0)
                    res = nodes.PreviewImage().save_images(decoded_image, filename_prefix="PreviewBridge/PBL-", prompt=prompt, extra_pnginfo=extra_pnginfo)
                else:
                    masked_images = tensor_convert_rgba(decoded_image)
                    resized_mask = resize_mask(mask, (decoded_image.shape[1], decoded_image.shape[2])).unsqueeze(3)
                    resized_mask = 1 - resized_mask
                    tensor_putalpha(masked_images, resized_mask)
                    res = nodes.PreviewImage().save_images(masked_images, filename_prefix="PreviewBridge/PBL-", prompt=prompt, extra_pnginfo=extra_pnginfo)

                res_image = res['ui']['images']

            is_empty_mask = torch.all(mask == 1)

            path = os.path.join(folder_paths.get_temp_directory(), 'PreviewBridge', res_image[0]['filename'])
            core.set_previewbridge_image(unique_id, path, res_image[0])
            core.preview_bridge_image_id_map[image] = (path, res_image[0])
            core.preview_bridge_image_name_map[unique_id, path] = (image, res_image[0])
            core.preview_bridge_cache[unique_id] = (latent, preview_method, vae_opt, res_image)

            res_latent = latent

        if block and is_empty_mask and core.is_execution_model_version_supported():
            from comfy_execution.graph import ExecutionBlocker
            result = ExecutionBlocker(None), ExecutionBlocker(None)
        elif block and is_empty_mask:
            print(f"[Impact Pack] PreviewBridgeLatent: ComfyUI is outdated - blocking feature is disabled.")
            result = res_latent, mask
        else:
            result = res_latent, mask

        if not is_empty_mask:
            core.preview_bridge_last_mask_cache[unique_id] = mask

        return {
            "ui": {"images": res_image},
            "result": result,
        }