Spaces:
Running
Running
File size: 17,694 Bytes
c37b2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import folder_paths
import impact.wildcards
from impact.utils import any_typ
class ToDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"], ),
},
"optional": {
"sam_model_opt": ("SAM_MODEL",),
"segm_detector_opt": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
}}
RETURN_TYPES = ("DETAILER_PIPE", )
RETURN_NAMES = ("detailer_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, *args, **kwargs):
pipe = (kwargs['model'], kwargs['clip'], kwargs['vae'], kwargs['positive'], kwargs['negative'], kwargs['wildcard'], kwargs['bbox_detector'],
kwargs.get('segm_detector_opt', None), kwargs.get('sam_model_opt', None), kwargs.get('detailer_hook', None),
kwargs.get('refiner_model', None), kwargs.get('refiner_clip', None),
kwargs.get('refiner_positive', None), kwargs.get('refiner_negative', None))
return (pipe, )
class ToDetailerPipeSDXL(ToDetailerPipe):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"refiner_model": ("MODEL",),
"refiner_clip": ("CLIP",),
"refiner_positive": ("CONDITIONING",),
"refiner_negative": ("CONDITIONING",),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
"optional": {
"sam_model_opt": ("SAM_MODEL",),
"segm_detector_opt": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
}}
class FromDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {"detailer_pipe": ("DETAILER_PIPE",), }, }
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING", "BBOX_DETECTOR", "SAM_MODEL", "SEGM_DETECTOR", "DETAILER_HOOK")
RETURN_NAMES = ("model", "clip", "vae", "positive", "negative", "bbox_detector", "sam_model_opt", "segm_detector_opt", "detailer_hook")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, detailer_pipe):
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, _, _, _, _ = detailer_pipe
return model, clip, vae, positive, negative, bbox_detector, sam_model_opt, segm_detector_opt, detailer_hook
class FromDetailerPipe_v2:
@classmethod
def INPUT_TYPES(s):
return {"required": {"detailer_pipe": ("DETAILER_PIPE",), }, }
RETURN_TYPES = ("DETAILER_PIPE", "MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING", "BBOX_DETECTOR", "SAM_MODEL", "SEGM_DETECTOR", "DETAILER_HOOK")
RETURN_NAMES = ("detailer_pipe", "model", "clip", "vae", "positive", "negative", "bbox_detector", "sam_model_opt", "segm_detector_opt", "detailer_hook")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, detailer_pipe):
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, _, _, _, _ = detailer_pipe
return detailer_pipe, model, clip, vae, positive, negative, bbox_detector, sam_model_opt, segm_detector_opt, detailer_hook
class FromDetailerPipe_SDXL:
@classmethod
def INPUT_TYPES(s):
return {"required": {"detailer_pipe": ("DETAILER_PIPE",), }, }
RETURN_TYPES = ("DETAILER_PIPE", "MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING", "BBOX_DETECTOR", "SAM_MODEL", "SEGM_DETECTOR", "DETAILER_HOOK", "MODEL", "CLIP", "CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("detailer_pipe", "model", "clip", "vae", "positive", "negative", "bbox_detector", "sam_model_opt", "segm_detector_opt", "detailer_hook", "refiner_model", "refiner_clip", "refiner_positive", "refiner_negative")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, detailer_pipe):
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe
return detailer_pipe, model, clip, vae, positive, negative, bbox_detector, sam_model_opt, segm_detector_opt, detailer_hook, refiner_model, refiner_clip, refiner_positive, refiner_negative
class AnyPipeToBasic:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"any_pipe": (any_typ,)},
}
RETURN_TYPES = ("BASIC_PIPE", )
RETURN_NAMES = ("basic_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, any_pipe):
return (any_pipe[:5], )
class ToBasicPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
},
}
RETURN_TYPES = ("BASIC_PIPE", )
RETURN_NAMES = ("basic_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, model, clip, vae, positive, negative):
pipe = (model, clip, vae, positive, negative)
return (pipe, )
class FromBasicPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {"basic_pipe": ("BASIC_PIPE",), }, }
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("model", "clip", "vae", "positive", "negative")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, basic_pipe):
model, clip, vae, positive, negative = basic_pipe
return model, clip, vae, positive, negative
class FromBasicPipe_v2:
@classmethod
def INPUT_TYPES(s):
return {"required": {"basic_pipe": ("BASIC_PIPE",), }, }
RETURN_TYPES = ("BASIC_PIPE", "MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("basic_pipe", "model", "clip", "vae", "positive", "negative")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, basic_pipe):
model, clip, vae, positive, negative = basic_pipe
return basic_pipe, model, clip, vae, positive, negative
class BasicPipeToDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {"basic_pipe": ("BASIC_PIPE",),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
"optional": {
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
},
}
RETURN_TYPES = ("DETAILER_PIPE", )
RETURN_NAMES = ("detailer_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, *args, **kwargs):
basic_pipe = kwargs['basic_pipe']
bbox_detector = kwargs['bbox_detector']
wildcard = kwargs['wildcard']
sam_model_opt = kwargs.get('sam_model_opt', None)
segm_detector_opt = kwargs.get('segm_detector_opt', None)
detailer_hook = kwargs.get('detailer_hook', None)
model, clip, vae, positive, negative = basic_pipe
pipe = model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, None, None, None, None
return (pipe, )
class BasicPipeToDetailerPipeSDXL:
@classmethod
def INPUT_TYPES(s):
return {"required": {"base_basic_pipe": ("BASIC_PIPE",),
"refiner_basic_pipe": ("BASIC_PIPE",),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
"optional": {
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
},
}
RETURN_TYPES = ("DETAILER_PIPE", )
RETURN_NAMES = ("detailer_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, *args, **kwargs):
base_basic_pipe = kwargs['base_basic_pipe']
refiner_basic_pipe = kwargs['refiner_basic_pipe']
bbox_detector = kwargs['bbox_detector']
wildcard = kwargs['wildcard']
sam_model_opt = kwargs.get('sam_model_opt', None)
segm_detector_opt = kwargs.get('segm_detector_opt', None)
detailer_hook = kwargs.get('detailer_hook', None)
model, clip, vae, positive, negative = base_basic_pipe
refiner_model, refiner_clip, refiner_vae, refiner_positive, refiner_negative = refiner_basic_pipe
pipe = model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, refiner_model, refiner_clip, refiner_positive, refiner_negative
return (pipe, )
class DetailerPipeToBasicPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {"detailer_pipe": ("DETAILER_PIPE",), }}
RETURN_TYPES = ("BASIC_PIPE", "BASIC_PIPE")
RETURN_NAMES = ("base_basic_pipe", "refiner_basic_pipe")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, detailer_pipe):
model, clip, vae, positive, negative, _, _, _, _, _, refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe
pipe = model, clip, vae, positive, negative
refiner_pipe = refiner_model, refiner_clip, vae, refiner_positive, refiner_negative
return (pipe, refiner_pipe)
class EditBasicPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"basic_pipe": ("BASIC_PIPE",), },
"optional": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
},
}
RETURN_TYPES = ("BASIC_PIPE", )
RETURN_NAMES = ("basic_pipe", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, basic_pipe, model=None, clip=None, vae=None, positive=None, negative=None):
res_model, res_clip, res_vae, res_positive, res_negative = basic_pipe
if model is not None:
res_model = model
if clip is not None:
res_clip = clip
if vae is not None:
res_vae = vae
if positive is not None:
res_positive = positive
if negative is not None:
res_negative = negative
pipe = res_model, res_clip, res_vae, res_positive, res_negative
return (pipe, )
class EditDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"detailer_pipe": ("DETAILER_PIPE",),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
"optional": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"bbox_detector": ("BBOX_DETECTOR",),
"sam_model": ("SAM_MODEL",),
"segm_detector": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
},
}
RETURN_TYPES = ("DETAILER_PIPE",)
RETURN_NAMES = ("detailer_pipe",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Pipe"
def doit(self, *args, **kwargs):
detailer_pipe = kwargs['detailer_pipe']
wildcard = kwargs['wildcard']
model = kwargs.get('model', None)
clip = kwargs.get('clip', None)
vae = kwargs.get('vae', None)
positive = kwargs.get('positive', None)
negative = kwargs.get('negative', None)
bbox_detector = kwargs.get('bbox_detector', None)
sam_model = kwargs.get('sam_model', None)
segm_detector = kwargs.get('segm_detector', None)
detailer_hook = kwargs.get('detailer_hook', None)
refiner_model = kwargs.get('refiner_model', None)
refiner_clip = kwargs.get('refiner_clip', None)
refiner_positive = kwargs.get('refiner_positive', None)
refiner_negative = kwargs.get('refiner_negative', None)
res_model, res_clip, res_vae, res_positive, res_negative, res_wildcard, res_bbox_detector, res_segm_detector, res_sam_model, res_detailer_hook, res_refiner_model, res_refiner_clip, res_refiner_positive, res_refiner_negative = detailer_pipe
if model is not None:
res_model = model
if clip is not None:
res_clip = clip
if vae is not None:
res_vae = vae
if positive is not None:
res_positive = positive
if negative is not None:
res_negative = negative
if bbox_detector is not None:
res_bbox_detector = bbox_detector
if segm_detector is not None:
res_segm_detector = segm_detector
if wildcard != "":
res_wildcard = wildcard
if sam_model is not None:
res_sam_model = sam_model
if detailer_hook is not None:
res_detailer_hook = detailer_hook
if refiner_model is not None:
res_refiner_model = refiner_model
if refiner_clip is not None:
res_refiner_clip = refiner_clip
if refiner_positive is not None:
res_refiner_positive = refiner_positive
if refiner_negative is not None:
res_refiner_negative = refiner_negative
pipe = (res_model, res_clip, res_vae, res_positive, res_negative, res_wildcard,
res_bbox_detector, res_segm_detector, res_sam_model, res_detailer_hook,
res_refiner_model, res_refiner_clip, res_refiner_positive, res_refiner_negative)
return (pipe, )
class EditDetailerPipeSDXL(EditDetailerPipe):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"detailer_pipe": ("DETAILER_PIPE",),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
"optional": {
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"refiner_model": ("MODEL",),
"refiner_clip": ("CLIP",),
"refiner_positive": ("CONDITIONING",),
"refiner_negative": ("CONDITIONING",),
"bbox_detector": ("BBOX_DETECTOR",),
"sam_model": ("SAM_MODEL",),
"segm_detector": ("SEGM_DETECTOR",),
"detailer_hook": ("DETAILER_HOOK",),
},
}
|