File size: 39,951 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import math
import impact.core as core
from comfy_extras.nodes_custom_sampler import Noise_RandomNoise
from impact.utils import *
from nodes import MAX_RESOLUTION
import nodes
from impact.impact_sampling import KSamplerWrapper, KSamplerAdvancedWrapper, separated_sample, impact_sample
import comfy

class TiledKSamplerProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "tooltip": "classifier free guidance value"}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "sampler"}),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "noise schedule"}),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of noise to remove. This amount is the noise added at the start, and the higher it is, the more the input latent will be modified before being returned."}),
                    "tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64, "tooltip": "Sets the width of the tile to be used in TiledKSampler."}),
                    "tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64, "tooltip": "Sets the height of the tile to be used in TiledKSampler."}),
                    "tiling_strategy": (["random", "padded", 'simple'], {"tooltip": "Sets the tiling strategy for TiledKSampler."} ),
                    "basic_pipe": ("BASIC_PIPE", {"tooltip": "basic_pipe input for sampling"})
                    }}

    OUTPUT_TOOLTIPS = ("sampler wrapper. (Can be used when generating a regional_prompt.)", )

    RETURN_TYPES = ("KSAMPLER",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def doit(seed, steps, cfg, sampler_name, scheduler, denoise,

             tile_width, tile_height, tiling_strategy, basic_pipe):
        model, _, _, positive, negative = basic_pipe
        sampler = core.TiledKSamplerWrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
                                            tile_width, tile_height, tiling_strategy)
        return (sampler, )


class KSamplerProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                                "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                                "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "tooltip": "classifier free guidance value"}),
                                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "sampler"}),
                                "scheduler": (core.SCHEDULERS, {"tooltip": "noise schedule"}),
                                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of noise to remove. This amount is the noise added at the start, and the higher it is, the more the input latent will be modified before being returned."}),
                                "basic_pipe": ("BASIC_PIPE", {"tooltip": "basic_pipe input for sampling"})
                             },
                "optional": {
                    "scheduler_func_opt": ("SCHEDULER_FUNC", {"tooltip": "[OPTIONAL] Noise schedule generation function. If this is set, the scheduler widget will be ignored."}),
                    }
                }

    OUTPUT_TOOLTIPS = ("sampler wrapper. (Can be used when generating a regional_prompt.)",)

    RETURN_TYPES = ("KSAMPLER",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def doit(seed, steps, cfg, sampler_name, scheduler, denoise, basic_pipe, scheduler_func_opt=None):
        model, _, _, positive, negative = basic_pipe
        sampler = KSamplerWrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, scheduler_func=scheduler_func_opt)
        return (sampler, )


class KSamplerAdvancedProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "toolip": "classifier free guidance value"}),
                                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"toolip": "sampler"}),
                                "scheduler": (core.SCHEDULERS, {"toolip": "noise schedule"}),
                                "sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "toolip": "Multiplier of noise schedule"}),
                                "basic_pipe": ("BASIC_PIPE", {"toolip": "basic_pipe input for sampling"})
                             },
                "optional": {
                                "sampler_opt": ("SAMPLER", {"toolip": "[OPTIONAL] Uses the passed sampler instead of internal impact_sampler."}),
                                "scheduler_func_opt": ("SCHEDULER_FUNC", {"toolip": "[OPTIONAL] Noise schedule generation function. If this is set, the scheduler widget will be ignored."}),
                            }
                }

    OUTPUT_TOOLTIPS = ("sampler wrapper. (Can be used when generating a regional_prompt.)", )

    RETURN_TYPES = ("KSAMPLER_ADVANCED",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def doit(cfg, sampler_name, scheduler, basic_pipe, sigma_factor=1.0, sampler_opt=None, scheduler_func_opt=None):
        model, _, _, positive, negative = basic_pipe
        sampler = KSamplerAdvancedWrapper(model, cfg, sampler_name, scheduler, positive, negative, sampler_opt=sampler_opt, sigma_factor=sigma_factor, scheduler_func=scheduler_func_opt)
        return (sampler, )


class TwoSamplersForMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "latent_image": ("LATENT", {"tooltip": "input latent image"}),
                     "base_sampler": ("KSAMPLER", {"tooltip": "Sampler to apply to the region outside the mask."}),
                     "mask_sampler": ("KSAMPLER", {"tooltip": "Sampler to apply to the masked region."}),
                     "mask": ("MASK", {"tooltip": "region mask"})
                     },
                }

    OUTPUT_TOOLTIPS = ("result latent", )

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def doit(latent_image, base_sampler, mask_sampler, mask):
        inv_mask = torch.where(mask != 1.0, torch.tensor(1.0), torch.tensor(0.0))

        latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample(latent_image)

        new_latent_image['noise_mask'] = mask
        new_latent_image = mask_sampler.sample(new_latent_image)

        del new_latent_image['noise_mask']

        return (new_latent_image, )


class TwoAdvancedSamplersForMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of noise to remove. This amount is the noise added at the start, and the higher it is, the more the input latent will be modified before being returned."}),
                     "samples": ("LATENT", {"tooltip": "input latent image"}),
                     "base_sampler": ("KSAMPLER_ADVANCED", {"tooltip": "Sampler to apply to the region outside the mask."}),
                     "mask_sampler": ("KSAMPLER_ADVANCED", {"tooltip": "Sampler to apply to the masked region."}),
                     "mask": ("MASK", {"tooltip": "region mask"}),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000, "tooltip": "To smooth the seams of the region boundaries, expand the mask by the overlap_factor amount to overlap with other regions."})
                     },
                }

    OUTPUT_TOOLTIPS = ("result latent", )

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def doit(seed, steps, denoise, samples, base_sampler, mask_sampler, mask, overlap_factor):
        regional_prompts = RegionalPrompt().doit(mask=mask, advanced_sampler=mask_sampler)[0]

        return RegionalSampler().doit(seed=seed, seed_2nd=0, seed_2nd_mode="ignore", steps=steps, base_only_steps=1,
                                      denoise=denoise, samples=samples, base_sampler=base_sampler,
                                      regional_prompts=regional_prompts, overlap_factor=overlap_factor,
                                      restore_latent=True, additional_mode="ratio between",
                                      additional_sampler="AUTO", additional_sigma_ratio=0.3)


class RegionalPrompt:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "mask": ("MASK", {"tooltip": "region mask"}),
                    "advanced_sampler": ("KSAMPLER_ADVANCED", {"tooltip": "sampler for specified region"}),
                    },
                "optional": {
                    "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Sets the extra seed to be used for noise variation."}),
                    "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Sets the strength of the noise variation."}),
                    "variation_method": (["linear", "slerp"], {"tooltip": "Sets how the original noise and extra noise are blended together."}),
                    }
                }

    OUTPUT_TOOLTIPS = ("regional prompts. (Can be used in the RegionalSampler.)", )

    RETURN_TYPES = ("REGIONAL_PROMPTS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    @staticmethod
    def doit(mask, advanced_sampler, variation_seed=0, variation_strength=0.0, variation_method="linear"):
        regional_prompt = core.REGIONAL_PROMPT(mask, advanced_sampler, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)
        return ([regional_prompt], )


class CombineRegionalPrompts:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "regional_prompts1": ("REGIONAL_PROMPTS", {"tooltip": "input regional_prompts. (Connecting to the input slot increases the number of additional slots.)"}),
                     },
                }

    OUTPUT_TOOLTIPS = ("Combined REGIONAL_PROMPTS", )

    RETURN_TYPES = ("REGIONAL_PROMPTS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    @staticmethod
    def doit(**kwargs):
        res = []
        for k, v in kwargs.items():
            res += v

        return (res, )


class CombineConditionings:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "conditioning1": ("CONDITIONING", { "tooltip": "input conditionings. (Connecting to the input slot increases the number of additional slots.)" }),
                     },
                }

    OUTPUT_TOOLTIPS = ("Combined conditioning", )

    RETURN_TYPES = ("CONDITIONING", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Util"

    @staticmethod
    def doit(**kwargs):
        res = []
        for k, v in kwargs.items():
            res += v

        return (res, )
    

class ConcatConditionings:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "conditioning1": ("CONDITIONING", { "tooltip": "input conditionings. (Connecting to the input slot increases the number of additional slots.)" }),
                     },
                }

    OUTPUT_TOOLTIPS = ("Concatenated conditioning", )

    RETURN_TYPES = ("CONDITIONING", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Util"

    @staticmethod
    def doit(**kwargs):
        conditioning_to = list(kwargs.values())[0]

        for k, conditioning_from in list(kwargs.items())[1:]:
            out = []
            if len(conditioning_from) > 1:
                print("Warning: ConcatConditionings {k} contains more than 1 cond, only the first one will actually be applied to conditioning1.")

            cond_from = conditioning_from[0][0]

            for i in range(len(conditioning_to)):
                t1 = conditioning_to[i][0]
                tw = torch.cat((t1, cond_from), 1)
                n = [tw, conditioning_to[i][1].copy()]
                out.append(n)

            conditioning_to = out

        return (out, )
    
    
class RegionalSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                     "seed_2nd": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Additional noise seed. The behavior is determined by seed_2nd_mode."}),
                     "seed_2nd_mode": (["ignore", "fixed", "seed+seed_2nd", "seed-seed_2nd", "increment", "decrement", "randomize"], {"tooltip": "application method of seed_2nd. 1) ignore: Do not use seed_2nd. In the base only sampling stage, the seed is applied as a noise seed, and in the regional sampling stage, denoising is performed as it is without additional noise. 2) Others: In the base only sampling stage, the seed is applied as a noise seed, and once it is closed so that there is no leftover noise, new noise is added with seed_2nd and the regional samping stage is performed. a) fixed: Use seed_2nd as it is as an additional noise seed. b) seed+seed_2nd: Apply the value of seed+seed_2nd as an additional noise seed. c) seed-seed_2nd: Apply the value of seed-seed_2nd as an additional noise seed. d) increment: Not implemented yet. Same with fixed. e) decrement: Not implemented yet. Same with fixed. f) randomize: Not implemented yet. Same with fixed."}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                     "base_only_steps": ("INT", {"default": 2, "min": 0, "max": 10000, "tooltip": "total sampling steps"}),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of noise to remove. This amount is the noise added at the start, and the higher it is, the more the input latent will be modified before being returned."}),
                     "samples": ("LATENT", {"tooltip": "input latent image"}),
                     "base_sampler": ("KSAMPLER_ADVANCED", {"tooltip": "The sampler applied outside the area set by the regional_prompt."}),
                     "regional_prompts": ("REGIONAL_PROMPTS", {"tooltip": "The prompt applied to each region"}),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000, "tooltip": "To smooth the seams of the region boundaries, expand the mask set in regional_prompts by the overlap_factor amount to overlap with other regions."}),
                     "restore_latent": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled", "tooltip": "At each step, restore the noise outside the mask area to its original state, as per the principle of inpainting. This option is provided for backward compatibility, and it is recommended to always set it to true."}),
                     "additional_mode": (["DISABLE", "ratio additional", "ratio between"], {"default": "ratio between", "tooltip": "..._sde or uni_pc and other special samplers are used, the region is not properly denoised, and it causes a phenomenon that destroys the overall harmony. To compensate for this, a recovery operation is performed using another sampler. This requires a longer time for sampling because a second sampling is performed at each step in each region using a special sampler. 1) DISABLE: Disable this feature. 2) ratio additional: After performing the denoise amount to be performed in the step with the sampler set in the region, the recovery sampler is additionally applied by the additional_sigma_ratio. If you use this option, the total denoise amount increases by additional_sigma_ratio. 3) ratio between: The denoise amount to be performed in the step with the sampler set in the region and the denoise amount to be applied to the recovery sampler are divided by additional_sigma_ratio, and denoise is performed for each denoise amount. If you use this option, the total denoise amount does not change."}),
                     "additional_sampler": (["AUTO", "euler", "heun", "heunpp2", "dpm_2", "dpm_fast", "dpmpp_2m", "ddpm"], {"tooltip": "1) AUTO: Automatically set the recovery sampler. If the sampler is uni_pc, uni_pc_bh2, dpmpp_sde, dpmpp_sde_gpu, the dpm_fast sampler is selected If the sampler is dpmpp_2m_sde, dpmpp_2m_sde_gpu, dpmpp_3m_sde, dpmpp_3m_sde_gpu, the dpmpp_2m sampler is selected. 2) Others: Manually set the recovery sampler."}),
                     "additional_sigma_ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Multiplier of noise schedule to be applied according to additional_mode."}),
                     },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    OUTPUT_TOOLTIPS = ("result latent", )

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    @staticmethod
    def separated_sample(*args, **kwargs):
        return separated_sample(*args, **kwargs)

    @staticmethod
    def mask_erosion(samples, mask, grow_mask_by):
        mask = mask.clone()

        w = samples['samples'].shape[3]
        h = samples['samples'].shape[2]

        mask2 = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(w, h), mode="bilinear")
        if grow_mask_by == 0:
            mask_erosion = mask2
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask2.round(), kernel_tensor, padding=padding), 0, 1)

        return mask_erosion[:, :, :w, :h].round()

    @staticmethod
    def doit(seed, seed_2nd, seed_2nd_mode, steps, base_only_steps, denoise, samples, base_sampler, regional_prompts, overlap_factor, restore_latent,

             additional_mode, additional_sampler, additional_sigma_ratio, unique_id=None):

        samples = samples.copy()
        samples['samples'] = comfy.sample.fix_empty_latent_channels(base_sampler.params[0], samples['samples'])

        if restore_latent:
            latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']()
        else:
            latent_compositor = None

        masks = [regional_prompt.mask.numpy() for regional_prompt in regional_prompts]
        masks = [np.ceil(mask).astype(np.int32) for mask in masks]
        combined_mask = torch.from_numpy(np.bitwise_or.reduce(masks))

        inv_mask = torch.where(combined_mask == 0, torch.tensor(1.0), torch.tensor(0.0))

        adv_steps = int(steps / denoise)
        start_at_step = adv_steps - steps

        region_len = len(regional_prompts)
        total = steps*region_len

        leftover_noise = False
        if base_only_steps > 0:
            if seed_2nd_mode == 'ignore':
                leftover_noise = True

            noise = Noise_RandomNoise(seed).generate_noise(samples)

            for rp in regional_prompts:
                noise = rp.touch_noise(noise)

            samples = base_sampler.sample_advanced(True, seed, adv_steps, samples, start_at_step, start_at_step + base_only_steps, leftover_noise, recovery_mode="DISABLE", noise=noise)

        if seed_2nd_mode == "seed+seed_2nd":
            seed += seed_2nd
            if seed > 1125899906842624:
                seed = seed - 1125899906842624
        elif seed_2nd_mode == "seed-seed_2nd":
            seed -= seed_2nd
            if seed < 0:
                seed += 1125899906842624
        elif seed_2nd_mode != 'ignore':
            seed = seed_2nd

        new_latent_image = samples.copy()
        base_latent_image = None

        if not leftover_noise:
            add_noise = True
            noise = Noise_RandomNoise(seed).generate_noise(samples)

            for rp in regional_prompts:
                noise = rp.touch_noise(noise)
        else:
            add_noise = False
            noise = None

        for i in range(start_at_step+base_only_steps, adv_steps):
            core.update_node_status(unique_id, f"{i}/{steps} steps  |         ", ((i-start_at_step)*region_len)/total)

            new_latent_image['noise_mask'] = inv_mask
            new_latent_image = base_sampler.sample_advanced(add_noise, seed, adv_steps, new_latent_image,
                                                            start_at_step=i, end_at_step=i + 1, return_with_leftover_noise=True,
                                                            recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio, noise=noise)

            if restore_latent:
                if 'noise_mask' in new_latent_image:
                    del new_latent_image['noise_mask']
                base_latent_image = new_latent_image.copy()

            j = 1
            for regional_prompt in regional_prompts:
                if restore_latent:
                    new_latent_image = base_latent_image.copy()

                core.update_node_status(unique_id, f"{i}/{steps} steps  |  {j}/{region_len}", ((i-start_at_step)*region_len + j)/total)

                region_mask = regional_prompt.get_mask_erosion(overlap_factor).squeeze(0).squeeze(0)

                new_latent_image['noise_mask'] = region_mask
                new_latent_image = regional_prompt.sampler.sample_advanced(False, seed, adv_steps, new_latent_image, i, i + 1, True,
                                                                           recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

                if restore_latent:
                    del new_latent_image['noise_mask']
                    base_latent_image = latent_compositor.composite(base_latent_image, new_latent_image, 0, 0, False, region_mask)[0]
                    new_latent_image = base_latent_image

                j += 1

            add_noise = False

        # finalize
        core.update_node_status(unique_id, f"finalize")
        if base_latent_image is not None:
            new_latent_image = base_latent_image
        else:
            base_latent_image = new_latent_image

        new_latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample_advanced(False, seed, adv_steps, new_latent_image, adv_steps, adv_steps+1, False,
                                                        recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

        core.update_node_status(unique_id, f"{steps}/{steps} steps", total)
        core.update_node_status(unique_id, "", None)

        if restore_latent:
            new_latent_image = base_latent_image

        if 'noise_mask' in new_latent_image:
            del new_latent_image['noise_mask']

        return (new_latent_image, )


class RegionalSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled", "tooltip": "Whether to add noise"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000, "tooltip": "The starting step of the sampling to be applied at this node within the range of 'steps'."}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000, "tooltip": "The step at which sampling applied at this node will stop within the range of steps (if greater than steps, sampling will continue only up to steps)."}),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000, "tooltip": "To smooth the seams of the region boundaries, expand the mask set in regional_prompts by the overlap_factor amount to overlap with other regions."}),
                     "restore_latent": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled", "tooltip": "At each step, restore the noise outside the mask area to its original state, as per the principle of inpainting. This option is provided for backward compatibility, and it is recommended to always set it to true."}),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled", "tooltip": "Whether to return the latent with noise remaining if the noise has not been completely removed according to the noise schedule, or to completely remove the noise before returning it."}),
                     "latent_image": ("LATENT", {"tooltip": "input latent image"}),
                     "base_sampler": ("KSAMPLER_ADVANCED", {"tooltip": "The sampler applied outside the area set by the regional_prompt."}),
                     "regional_prompts": ("REGIONAL_PROMPTS", {"tooltip": "The prompt applied to each region"}),
                     "additional_mode": (["DISABLE", "ratio additional", "ratio between"], {"default": "ratio between", "tooltip": "..._sde or uni_pc and other special samplers are used, the region is not properly denoised, and it causes a phenomenon that destroys the overall harmony. To compensate for this, a recovery operation is performed using another sampler. This requires a longer time for sampling because a second sampling is performed at each step in each region using a special sampler. 1) DISABLE: Disable this feature. 2) ratio additional: After performing the denoise amount to be performed in the step with the sampler set in the region, the recovery sampler is additionally applied by the additional_sigma_ratio. If you use this option, the total denoise amount increases by additional_sigma_ratio. 3) ratio between: The denoise amount to be performed in the step with the sampler set in the region and the denoise amount to be applied to the recovery sampler are divided by additional_sigma_ratio, and denoise is performed for each denoise amount. If you use this option, the total denoise amount does not change."}),
                     "additional_sampler": (["AUTO", "euler", "heun", "heunpp2", "dpm_2", "dpm_fast", "dpmpp_2m", "ddpm"], {"tooltip": "1) AUTO: Automatically set the recovery sampler. If the sampler is uni_pc, uni_pc_bh2, dpmpp_sde, dpmpp_sde_gpu, the dpm_fast sampler is selected If the sampler is dpmpp_2m_sde, dpmpp_2m_sde_gpu, dpmpp_3m_sde, dpmpp_3m_sde_gpu, the dpmpp_2m sampler is selected. 2) Others: Manually set the recovery sampler."}),
                     "additional_sigma_ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Multiplier of noise schedule to be applied according to additional_mode."}),
                     },
                 "hidden": {"unique_id": "UNIQUE_ID"},
                }

    OUTPUT_TOOLTIPS = ("result latent", )

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    @staticmethod
    def doit(add_noise, noise_seed, steps, start_at_step, end_at_step, overlap_factor, restore_latent, return_with_leftover_noise, latent_image, base_sampler, regional_prompts,

             additional_mode, additional_sampler, additional_sigma_ratio, unique_id):

        new_latent_image = latent_image.copy()
        new_latent_image['samples'] = comfy.sample.fix_empty_latent_channels(base_sampler.params[0], new_latent_image['samples'])

        if restore_latent:
            latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']()
        else:
            latent_compositor = None

        masks = [regional_prompt.mask.numpy() for regional_prompt in regional_prompts]
        masks = [np.ceil(mask).astype(np.int32) for mask in masks]
        combined_mask = torch.from_numpy(np.bitwise_or.reduce(masks))

        inv_mask = torch.where(combined_mask == 0, torch.tensor(1.0), torch.tensor(0.0))

        region_len = len(regional_prompts)
        end_at_step = min(steps, end_at_step)
        total = (end_at_step - start_at_step) * region_len

        base_latent_image = None
        region_masks = {}

        for i in range(start_at_step, end_at_step-1):
            core.update_node_status(unique_id, f"{start_at_step+i}/{end_at_step} steps  |         ", ((i-start_at_step)*region_len)/total)

            cur_add_noise = True if i == start_at_step and add_noise else False

            if cur_add_noise:
                noise = Noise_RandomNoise(noise_seed).generate_noise(new_latent_image)
                for rp in regional_prompts:
                    noise = rp.touch_noise(noise)
            else:
                noise = None

            new_latent_image['noise_mask'] = inv_mask
            new_latent_image = base_sampler.sample_advanced(cur_add_noise, noise_seed, steps, new_latent_image, i, i + 1, True,
                                                            recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio, noise=noise)

            if restore_latent:
                del new_latent_image['noise_mask']
                base_latent_image = new_latent_image.copy()

            j = 1
            for regional_prompt in regional_prompts:
                if restore_latent:
                    new_latent_image = base_latent_image.copy()

                core.update_node_status(unique_id, f"{start_at_step+i}/{end_at_step} steps  |  {j}/{region_len}", ((i-start_at_step)*region_len + j)/total)

                if j not in region_masks:
                    region_mask = regional_prompt.get_mask_erosion(overlap_factor).squeeze(0).squeeze(0)
                    region_masks[j] = region_mask
                else:
                    region_mask = region_masks[j]

                new_latent_image['noise_mask'] = region_mask
                new_latent_image = regional_prompt.sampler.sample_advanced(False, noise_seed, steps, new_latent_image, i, i + 1, True,
                                                                           recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

                if restore_latent:
                    del new_latent_image['noise_mask']
                    base_latent_image = latent_compositor.composite(base_latent_image, new_latent_image, 0, 0, False, region_mask)[0]
                    new_latent_image = base_latent_image

                j += 1

        # finalize
        core.update_node_status(unique_id, f"finalize")
        if base_latent_image is not None:
            new_latent_image = base_latent_image
        else:
            base_latent_image = new_latent_image

        new_latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample_advanced(False, noise_seed, steps, new_latent_image, end_at_step-1, end_at_step, return_with_leftover_noise,
                                                        recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

        core.update_node_status(unique_id, f"{end_at_step}/{end_at_step} steps", total)
        core.update_node_status(unique_id, "", None)

        if restore_latent:
            new_latent_image = base_latent_image

        if 'noise_mask' in new_latent_image:
            del new_latent_image['noise_mask']

        return (new_latent_image, )


class KSamplerBasicPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE", {"tooltip": "basic_pipe input for sampling"}),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "tooltip": "classifier free guidance value"}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "sampler"}),
                     "scheduler": (core.SCHEDULERS, {"tooltip": "noise schedule"}),
                     "latent_image": ("LATENT", {"tooltip": "input latent image"}),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of noise to remove. This amount is the noise added at the start, and the higher it is, the more the input latent will be modified before being returned."}),
                     },
                "optional":
                    {
                        "scheduler_func_opt": ("SCHEDULER_FUNC", {"tooltip": "[OPTIONAL] Noise schedule generation function. If this is set, the scheduler widget will be ignored."}),
                    }
                }

    OUTPUT_TOOLTIPS = ("passthrough input basic_pipe", "result latent", "VAE in basic_pipe")

    RETURN_TYPES = ("BASIC_PIPE", "LATENT", "VAE")
    FUNCTION = "sample"

    CATEGORY = "ImpactPack/sampling"

    @staticmethod
    def sample(basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise=1.0, scheduler_func_opt=None):
        model, clip, vae, positive, negative = basic_pipe
        latent = impact_sample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, scheduler_func=scheduler_func_opt)
        return basic_pipe, latent, vae


class KSamplerAdvancedBasicPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE", {"tooltip": "basic_pipe input for sampling"}),
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable", "tooltip": "Whether to add noise"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "Random seed to use for generating CPU noise for sampling."}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "total sampling steps"}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "tooltip": "classifier free guidance value"}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "sampler"}),
                     "scheduler": (core.SCHEDULERS, {"tooltip": "noise schedule"}),
                     "latent_image": ("LATENT", {"tooltip": "input latent image"}),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000, "tooltip": "The starting step of the sampling to be applied at this node within the range of 'steps'."}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000, "tooltip": "The step at which sampling applied at this node will stop within the range of steps (if greater than steps, sampling will continue only up to steps)."}),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable", "tooltip": "Whether to return the latent with noise remaining if the noise has not been completely removed according to the noise schedule, or to completely remove the noise before returning it."}),
                     },
                "optional":
                    {
                        "scheduler_func_opt": ("SCHEDULER_FUNC", {"tooltip": "[OPTIONAL] Noise schedule generation function. If this is set, the scheduler widget will be ignored."}),
                    }
                }

    OUTPUT_TOOLTIPS = ("passthrough input basic_pipe", "result latent", "VAE in basic_pipe")

    RETURN_TYPES = ("BASIC_PIPE", "LATENT", "VAE")
    FUNCTION = "sample"

    CATEGORY = "ImpactPack/sampling"

    @staticmethod
    def sample(basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, scheduler_func_opt=None):
        model, clip, vae, positive, negative = basic_pipe

        latent = separated_sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, scheduler_func=scheduler_func_opt)
        return basic_pipe, latent, vae


class GITSSchedulerFuncProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "coeff": ("FLOAT", {"default": 1.20, "min": 0.80, "max": 1.50, "step": 0.05, "tooltip": "coeff factor of GITS Scheduler"}),
                        "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "denoise amount for noise schedule"}),
                    }
                }

    OUTPUT_TOOLTIPS = ("Returns a function that generates a noise schedule using GITSScheduler. This can be used in place of a predetermined noise schedule to dynamically generate a noise schedule based on the steps.",)

    RETURN_TYPES = ("SCHEDULER_FUNC",)
    CATEGORY = "ImpactPack/sampling"

    FUNCTION = "doit"

    @staticmethod
    def doit(coeff, denoise):
        def f(model, sampler, steps):
            if 'GITSScheduler' not in nodes.NODE_CLASS_MAPPINGS:
                raise Exception("[Impact Pack] ComfyUI is an outdated version. Cannot use GITSScheduler.")

            scheduler = nodes.NODE_CLASS_MAPPINGS['GITSScheduler']()
            return scheduler.get_sigmas(coeff, steps, denoise)[0]

        return (f, )


class NegativeConditioningPlaceholder:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {}}

    OUTPUT_TOOLTIPS = ("This is a Placeholder for the FLUX model that does not use Negative Conditioning.",)

    RETURN_TYPES = ("CONDITIONING",)
    CATEGORY = "ImpactPack/sampling"

    FUNCTION = "doit"

    @staticmethod
    def doit():
        return ("NegativePlaceholder", )