File size: 18,668 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import torch
import torchvision
import cv2
import numpy as np
import folder_paths
import nodes
from . import config
from PIL import Image
import comfy


class TensorBatchBuilder:
    def __init__(self):
        self.tensor = None

    def concat(self, new_tensor):
        if self.tensor is None:
            self.tensor = new_tensor
        else:
            self.tensor = torch.concat((self.tensor, new_tensor), dim=0)


def tensor_convert_rgba(image, prefer_copy=True):
    """Assumes NHWC format tensor with 1, 3 or 4 channels."""
    _tensor_check_image(image)
    n_channel = image.shape[-1]
    if n_channel == 4:
        return image

    if n_channel == 3:
        alpha = torch.ones((*image.shape[:-1], 1))
        return torch.cat((image, alpha), axis=-1)

    if n_channel == 1:
        if prefer_copy:
            image = image.repeat(1, -1, -1, 4)
        else:
            image = image.expand(1, -1, -1, 3)
        return image

    # NOTE: Similar error message as in PIL, for easier googling :P
    raise ValueError(f"illegal conversion (channels: {n_channel} -> 4)")


def tensor_convert_rgb(image, prefer_copy=True):
    """Assumes NHWC format tensor with 1, 3 or 4 channels."""
    _tensor_check_image(image)
    n_channel = image.shape[-1]
    if n_channel == 3:
        return image

    if n_channel == 4:
        image = image[..., :3]
        if prefer_copy:
            image = image.copy()
        return image

    if n_channel == 1:
        if prefer_copy:
            image = image.repeat(1, -1, -1, 4)
        else:
            image = image.expand(1, -1, -1, 3)
        return image

    # NOTE: Same error message as in PIL, for easier googling :P
    raise ValueError(f"illegal conversion (channels: {n_channel} -> 3)")


def general_tensor_resize(image, w: int, h: int):
    _tensor_check_image(image)
    image = image.permute(0, 3, 1, 2)
    image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear")
    image = image.permute(0, 2, 3, 1)
    return image


# TODO: Sadly, we need LANCZOS
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
def tensor_resize(image, w: int, h: int):
    _tensor_check_image(image)
    if image.shape[3] >= 3:
        scaled_images = TensorBatchBuilder()
        for single_image in image:
            single_image = single_image.unsqueeze(0)
            single_pil = tensor2pil(single_image)
            scaled_pil = single_pil.resize((w, h), resample=LANCZOS)

            single_image = pil2tensor(scaled_pil)
            scaled_images.concat(single_image)

        return scaled_images.tensor
    else:
        return general_tensor_resize(image, w, h)


def tensor_get_size(image):
    """Mimicking `PIL.Image.size`"""
    _tensor_check_image(image)
    _, h, w, _ = image.shape
    return (w, h)


def tensor2pil(image):
    _tensor_check_image(image)
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(0), 0, 255).astype(np.uint8))


def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)


def numpy2pil(image):
    return Image.fromarray(np.clip(255. * image.squeeze(0), 0, 255).astype(np.uint8))


def to_pil(image):
    if isinstance(image, Image.Image):
        return image
    if isinstance(image, torch.Tensor):
        return tensor2pil(image)
    if isinstance(image, np.ndarray):
        return numpy2pil(image)
    raise ValueError(f"Cannot convert {type(image)} to PIL.Image")


def to_tensor(image):
    if isinstance(image, Image.Image):
        return torch.from_numpy(np.array(image)) / 255.0
    if isinstance(image, torch.Tensor):
        return image
    if isinstance(image, np.ndarray):
        return torch.from_numpy(image)
    raise ValueError(f"Cannot convert {type(image)} to torch.Tensor")


def to_numpy(image):
    if isinstance(image, Image.Image):
        return np.array(image)
    if isinstance(image, torch.Tensor):
        return image.numpy()
    if isinstance(image, np.ndarray):
        return image
    raise ValueError(f"Cannot convert {type(image)} to numpy.ndarray")
    


def tensor_putalpha(image, mask):
    _tensor_check_image(image)
    _tensor_check_mask(mask)
    image[..., -1] = mask[..., 0]


def _tensor_check_image(image):
    if image.ndim != 4:
        raise ValueError(f"Expected NHWC tensor, but found {image.ndim} dimensions")
    if image.shape[-1] not in (1, 3, 4):
        raise ValueError(f"Expected 1, 3 or 4 channels for image, but found {image.shape[-1]} channels")
    return


def _tensor_check_mask(mask):
    if mask.ndim != 4:
        raise ValueError(f"Expected NHWC tensor, but found {mask.ndim} dimensions")
    if mask.shape[-1] != 1:
        raise ValueError(f"Expected 1 channel for mask, but found {mask.shape[-1]} channels")
    return


def tensor_crop(image, crop_region):
    _tensor_check_image(image)
    return crop_ndarray4(image, crop_region)


def tensor2numpy(image):
    _tensor_check_image(image)
    return image.numpy()


def tensor_paste(image1, image2, left_top, mask):
    """Mask and image2 has to be the same size"""
    _tensor_check_image(image1)
    _tensor_check_image(image2)
    _tensor_check_mask(mask)
    if image2.shape[1:3] != mask.shape[1:3]:
        mask = resize_mask(mask.squeeze(dim=3), image2.shape[1:3]).unsqueeze(dim=3)
        # raise ValueError(f"Inconsistent size: Image ({image2.shape[1:3]}) != Mask ({mask.shape[1:3]})")

    x, y = left_top
    _, h1, w1, _ = image1.shape
    _, h2, w2, _ = image2.shape

    # calculate image patch size
    w = min(w1, x + w2) - x
    h = min(h1, y + h2) - y

    # If the patch is out of bound, nothing to do!
    if w <= 0 or h <= 0:
        return

    mask = mask[:, :h, :w, :]
    image1[:, y:y+h, x:x+w, :] = (
        (1 - mask) * image1[:, y:y+h, x:x+w, :] +
        mask * image2[:, :h, :w, :]
    )
    return


def center_of_bbox(bbox):
    w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
    return bbox[0] + w/2, bbox[1] + h/2


def combine_masks(masks):
    if len(masks) == 0:
        return None
    else:
        initial_cv2_mask = np.array(masks[0][1])
        combined_cv2_mask = initial_cv2_mask

        for i in range(1, len(masks)):
            cv2_mask = np.array(masks[i][1])

            if combined_cv2_mask.shape == cv2_mask.shape:
                combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
            else:
                # do nothing - incompatible mask
                pass

        mask = torch.from_numpy(combined_cv2_mask)
        return mask


def combine_masks2(masks):
    if len(masks) == 0:
        return None
    else:
        initial_cv2_mask = np.array(masks[0]).astype(np.uint8)
        combined_cv2_mask = initial_cv2_mask

        for i in range(1, len(masks)):
            cv2_mask = np.array(masks[i]).astype(np.uint8)

            if combined_cv2_mask.shape == cv2_mask.shape:
                combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
            else:
                # do nothing - incompatible mask
                pass

        mask = torch.from_numpy(combined_cv2_mask)
        return mask


def bitwise_and_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1)
    cv2_mask2 = np.array(mask2)

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
        return torch.from_numpy(cv2_mask)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def to_binary_mask(mask, threshold=0):
    mask = make_3d_mask(mask)

    mask = mask.clone().cpu()
    mask[mask > threshold] = 1.
    mask[mask <= threshold] = 0.
    return mask


def use_gpu_opencv():
    return not config.get_config()['disable_gpu_opencv']


def dilate_mask(mask, dilation_factor, iter=1):
    if dilation_factor == 0:
        return make_2d_mask(mask)

    mask = make_2d_mask(mask)

    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    if use_gpu_opencv():
        mask = cv2.UMat(mask)
        kernel = cv2.UMat(kernel)

    if dilation_factor > 0:
        result = cv2.dilate(mask, kernel, iter)
    else:
        result = cv2.erode(mask, kernel, iter)

    if use_gpu_opencv():
        return result.get()
    else:
        return result


def dilate_masks(segmasks, dilation_factor, iter=1):
    if dilation_factor == 0:
        return segmasks

    dilated_masks = []
    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    if use_gpu_opencv():
        kernel = cv2.UMat(kernel)

    for i in range(len(segmasks)):
        cv2_mask = segmasks[i][1]

        if use_gpu_opencv():
            cv2_mask = cv2.UMat(cv2_mask)

        if dilation_factor > 0:
            dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
        else:
            dilated_mask = cv2.erode(cv2_mask, kernel, iter)

        if use_gpu_opencv():
            dilated_mask = dilated_mask.get()

        item = (segmasks[i][0], dilated_mask, segmasks[i][2])
        dilated_masks.append(item)

    return dilated_masks

import torch.nn.functional as F
def feather_mask(mask, thickness):
    mask = mask.permute(0, 3, 1, 2)

    # Gaussian kernel for blurring
    kernel_size = 2 * int(thickness) + 1
    sigma = thickness / 3  # Adjust the sigma value as needed
    blur_kernel = _gaussian_kernel(kernel_size, sigma).to(mask.device, mask.dtype)

    # Apply blur to the mask
    blurred_mask = F.conv2d(mask, blur_kernel.unsqueeze(0).unsqueeze(0), padding=thickness)

    blurred_mask = blurred_mask.permute(0, 2, 3, 1)

    return blurred_mask

def _gaussian_kernel(kernel_size, sigma):
    # Generate a 1D Gaussian kernel
    kernel = torch.exp(-(torch.arange(kernel_size) - kernel_size // 2)**2 / (2 * sigma**2))
    return kernel / kernel.sum()


def tensor_gaussian_blur_mask(mask, kernel_size, sigma=10.0):
    """Return NHWC torch.Tenser from ndim == 2 or 4 `np.ndarray` or `torch.Tensor`"""
    if isinstance(mask, np.ndarray):
        mask = torch.from_numpy(mask)

    if mask.ndim == 2:
        mask = mask[None, ..., None]
    elif mask.ndim == 3:
        mask = mask[..., None]

    _tensor_check_mask(mask)

    if kernel_size <= 0:
        return mask

    kernel_size = kernel_size*2+1

    shortest = min(mask.shape[1], mask.shape[2])
    if shortest <= kernel_size:
        kernel_size = int(shortest/2)
        if kernel_size % 2 == 0:
            kernel_size += 1
        if kernel_size < 3:
            return mask  # skip feathering

    prev_device = mask.device
    device = comfy.model_management.get_torch_device()
    mask.to(device)

    # apply gaussian blur
    mask = mask[:, None, ..., 0]
    blurred_mask = torchvision.transforms.GaussianBlur(kernel_size=kernel_size, sigma=sigma)(mask)
    blurred_mask = blurred_mask[:, 0, ..., None]

    blurred_mask.to(prev_device)

    return blurred_mask


def subtract_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1) * 255
    cv2_mask2 = np.array(mask2) * 255

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
        return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def add_masks(mask1, mask2):
    mask1 = mask1.cpu()
    mask2 = mask2.cpu()
    cv2_mask1 = np.array(mask1) * 255
    cv2_mask2 = np.array(mask2) * 255

    if cv2_mask1.shape == cv2_mask2.shape:
        cv2_mask = cv2.add(cv2_mask1, cv2_mask2)
        return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
    else:
        # do nothing - incompatible mask shape: mostly empty mask
        return mask1


def normalize_region(limit, startp, size):
    if startp < 0:
        new_endp = min(limit, size)
        new_startp = 0
    elif startp + size > limit:
        new_startp = max(0, limit - size)
        new_endp = limit
    else:
        new_startp = startp
        new_endp = min(limit, startp+size)

    return int(new_startp), int(new_endp)


def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None):
    x1 = bbox[0]
    y1 = bbox[1]
    x2 = bbox[2]
    y2 = bbox[3]

    bbox_w = x2 - x1
    bbox_h = y2 - y1

    crop_w = bbox_w * crop_factor
    crop_h = bbox_h * crop_factor

    if crop_min_size is not None:
        crop_w = max(crop_min_size, crop_w)
        crop_h = max(crop_min_size, crop_h)

    kernel_x = x1 + bbox_w / 2
    kernel_y = y1 + bbox_h / 2

    new_x1 = int(kernel_x - crop_w / 2)
    new_y1 = int(kernel_y - crop_h / 2)

    # make sure position in (w,h)
    new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
    new_y1, new_y2 = normalize_region(h, new_y1, crop_h)

    return [new_x1, new_y1, new_x2, new_y2]


def crop_ndarray4(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[:, y1:y2, x1:x2, :]

    return cropped


crop_tensor4 = crop_ndarray4


def crop_ndarray3(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[:, y1:y2, x1:x2]

    return cropped


def crop_ndarray2(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[y1:y2, x1:x2]

    return cropped


def crop_image(image, crop_region):
    return crop_tensor4(image, crop_region)


def to_latent_image(pixels, vae):
    x = pixels.shape[1]
    y = pixels.shape[2]
    if pixels.shape[1] != x or pixels.shape[2] != y:
        pixels = pixels[:, :x, :y, :]

    vae_encode = nodes.VAEEncode()

    return vae_encode.encode(vae, pixels)[0]


def empty_pil_tensor(w=64, h=64):
    return torch.zeros((1, h, w, 3), dtype=torch.float32)


def make_2d_mask(mask):
    if len(mask.shape) == 4:
        return mask.squeeze(0).squeeze(0)

    elif len(mask.shape) == 3:
        return mask.squeeze(0)

    return mask


def make_3d_mask(mask):
    if len(mask.shape) == 4:
        return mask.squeeze(0)

    elif len(mask.shape) == 2:
        return mask.unsqueeze(0)

    return mask


def make_4d_mask(mask):
    if len(mask.shape) == 3:
        return mask.unsqueeze(0)

    elif len(mask.shape) == 2:
        return mask.unsqueeze(0).unsqueeze(0)

    return mask


def is_same_device(a, b):
    a_device = torch.device(a) if isinstance(a, str) else a
    b_device = torch.device(b) if isinstance(b, str) else b
    return a_device.type == b_device.type and a_device.index == b_device.index


def collect_non_reroute_nodes(node_map, links, res, node_id):
    if node_map[node_id]['type'] != 'Reroute' and node_map[node_id]['type'] != 'Reroute (rgthree)':
        res.append(node_id)
    else:
        for link in node_map[node_id]['outputs'][0]['links']:
            next_node_id = str(links[link][2])
            collect_non_reroute_nodes(node_map, links, res, next_node_id)


from torchvision.transforms.functional import to_pil_image


def resize_mask(mask, size):
    mask = make_4d_mask(mask)
    resized_mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False)
    return resized_mask.squeeze(0)


def apply_mask_alpha_to_pil(decoded_pil, mask):
    decoded_rgba = decoded_pil.convert('RGBA')
    mask_pil = to_pil_image(mask)
    decoded_rgba.putalpha(mask_pil)

    return decoded_rgba


def flatten_mask(all_masks):
    merged_mask = (all_masks[0] * 255).to(torch.uint8)
    for mask in all_masks[1:]:
        merged_mask |= (mask * 255).to(torch.uint8)

    return merged_mask


def try_install_custom_node(custom_node_url, msg):
    try:
        import cm_global
        cm_global.try_call(api='cm.try-install-custom-node',
                           sender="Impact Pack", custom_node_url=custom_node_url, msg=msg)
    except Exception:
        print(msg)
        print(f"[Impact Pack] ComfyUI-Manager is outdated. The custom node installation feature is not available.")


# author: Trung0246 --->
class TautologyStr(str):
    def __ne__(self, other):
        return False


class ByPassTypeTuple(tuple):
    def __getitem__(self, index):
        if index > 0:
            index = 0
        item = super().__getitem__(index)
        if isinstance(item, str):
            return TautologyStr(item)
        return item


class NonListIterable:
    def __init__(self, data):
        self.data = data

    def __getitem__(self, index):
        return self.data[index]


def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions):
    # Iterate over the list of full folder paths
    for full_folder_path in full_folder_paths:
        # Use the provided function to add each model folder path
        folder_paths.add_model_folder_path(folder_name, full_folder_path)

    # Now handle the extensions. If the folder name already exists, update the extensions
    if folder_name in folder_paths.folder_names_and_paths:
        # Unpack the current paths and extensions
        current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name]
        # Update the extensions set with the new extensions
        updated_extensions = current_extensions | extensions
        # Reassign the updated tuple back to the dictionary
        folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions)
    else:
        # If the folder name was not present, add_model_folder_path would have added it with the last path
        # Now we just need to update the set of extensions as it would be an empty set
        # Also ensure that all paths are included (since add_model_folder_path adds only one path at a time)
        folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions)
# <---

# wildcard trick is taken from pythongossss's
class AnyType(str):
    def __ne__(self, __value: object) -> bool:
        return False

any_typ = AnyType("*")