File size: 19,195 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import re
import random
import os
import nodes
import folder_paths
import yaml
import numpy as np
import threading
from impact import utils
from impact import config


wildcards_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "wildcards"))

RE_WildCardQuantifier = re.compile(r"(?P<quantifier>\d+)#__(?P<keyword>[\w.\-+/*\\]+?)__", re.IGNORECASE)
wildcard_lock = threading.Lock()
wildcard_dict = {}


def get_wildcard_list():
    with wildcard_lock:
        return [f"__{x}__" for x in wildcard_dict.keys()]


def get_wildcard_dict():
    global wildcard_dict
    with wildcard_lock:
        return wildcard_dict


def wildcard_normalize(x):
    return x.replace("\\", "/").replace(' ', '-').lower()


def read_wildcard(k, v):
    if isinstance(v, list):
        k = wildcard_normalize(k)
        wildcard_dict[k] = v
    elif isinstance(v, dict):
        for k2, v2 in v.items():
            new_key = f"{k}/{k2}"
            new_key = wildcard_normalize(new_key)
            read_wildcard(new_key, v2)
    elif isinstance(v, str):
        k = wildcard_normalize(k)
        wildcard_dict[k] = [v]


def read_wildcard_dict(wildcard_path):
    global wildcard_dict
    for root, directories, files in os.walk(wildcard_path, followlinks=True):
        for file in files:
            if file.endswith('.txt'):
                file_path = os.path.join(root, file)
                rel_path = os.path.relpath(file_path, wildcard_path)
                key = wildcard_normalize(os.path.splitext(rel_path)[0])

                try:
                    with open(file_path, 'r', encoding="ISO-8859-1") as f:
                        lines = f.read().splitlines()
                        wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')]
                except yaml.reader.ReaderError:
                    with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
                        lines = f.read().splitlines()
                        wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')]
            elif file.endswith('.yaml'):
                file_path = os.path.join(root, file)

                try:
                    with open(file_path, 'r', encoding="ISO-8859-1") as f:
                        yaml_data = yaml.load(f, Loader=yaml.FullLoader)
                except yaml.reader.ReaderError as e:
                    with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
                        yaml_data = yaml.load(f, Loader=yaml.FullLoader)

                for k, v in yaml_data.items():
                    read_wildcard(k, v)

    return wildcard_dict


def process_comment_out(text):
    lines = text.split('\n')

    lines0 = []
    flag = False
    for line in lines:
        if line.lstrip().startswith('#'):
            flag = True
            continue

        if len(lines0) == 0:
            lines0.append(line)
        elif flag:
            lines0[-1] += ' ' + line
            flag = False
        else:
            lines0.append(line)

    return '\n'.join(lines0)


def process(text, seed=None):
    text = process_comment_out(text)

    if seed is not None:
        random.seed(seed)
    random_gen = np.random.default_rng(seed)

    local_wildcard_dict = get_wildcard_dict()

    def replace_options(string):
        replacements_found = False

        def replace_option(match):
            nonlocal replacements_found
            options = match.group(1).split('|')

            multi_select_pattern = options[0].split('$$')
            select_range = None
            select_sep = ' '
            range_pattern = r'(\d+)(-(\d+))?'
            range_pattern2 = r'-(\d+)'
            wildcard_pattern = r"__([\w.\-+/*\\]+?)__"

            if len(multi_select_pattern) > 1:
                r = re.match(range_pattern, options[0])

                if r is None:
                    r = re.match(range_pattern2, options[0])
                    a = '1'
                    b = r.group(1).strip()
                else:
                    a = r.group(1).strip()
                    b = r.group(3)
                    if b is not None:
                        b = b.strip()
                        
                if r is not None:
                    if b is not None and is_numeric_string(a) and is_numeric_string(b):
                        # PATTERN: num1-num2
                        select_range = int(a), int(b)
                    elif is_numeric_string(a):
                        # PATTERN: num
                        x = int(a)
                        select_range = (x, x)

                    if select_range is not None and len(multi_select_pattern) == 2:
                        # PATTERN: count$$
                        matches = re.findall(wildcard_pattern, multi_select_pattern[1])
                        if len(options) == 1 and matches:
                            # count$$<single wildcard>
                            options = get_wildcard_options(multi_select_pattern[1])
                        else:
                            # count$$opt1|opt2|...
                            options[0] = multi_select_pattern[1]
                    elif select_range is not None and len(multi_select_pattern) == 3:
                        # PATTERN: count$$ sep $$
                        select_sep = multi_select_pattern[1]
                        options[0] = multi_select_pattern[2]

            adjusted_probabilities = []

            total_prob = 0

            for option in options:
                parts = option.split('::', 1)
                if len(parts) == 2 and is_numeric_string(parts[0].strip()):
                    config_value = float(parts[0].strip())
                else:
                    config_value = 1  # Default value if no configuration is provided

                adjusted_probabilities.append(config_value)
                total_prob += config_value

            normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities]

            if select_range is None:
                select_count = 1
            else:
                select_count = random_gen.integers(low=select_range[0], high=select_range[1]+1, size=1)

            if select_count > len(options):
                random_gen.shuffle(options)
                selected_items = options
            else:
                selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False)

            selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', x, 1) for x in selected_items]
            replacement = select_sep.join(selected_items2)
            if '::' in replacement:
                pass

            replacements_found = True
            return replacement

        pattern = r'{([^{}]*?)}'
        replaced_string = re.sub(pattern, replace_option, string)

        return replaced_string, replacements_found

    def get_wildcard_options(string):
        pattern = r"__([\w.\-+/*\\]+?)__"
        matches = re.findall(pattern, string)

        options = []

        for match in matches:
            keyword = match.lower()
            keyword = wildcard_normalize(keyword)
            if keyword in local_wildcard_dict:
                options.extend(local_wildcard_dict[keyword])
            elif '*' in keyword:
                subpattern = keyword.replace('*', '.*').replace('+', '\\+')
                total_patterns = []
                found = False
                for k, v in local_wildcard_dict.items():
                    if re.match(subpattern, k) is not None or re.match(subpattern, k+'/') is not None:
                        total_patterns += v
                        found = True

                if found:
                    options.extend(total_patterns)
            elif '/' not in keyword:
                string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
                options.extend(get_wildcard_options(string_fallback))

        return options

    def replace_wildcard(string):
        pattern = r"__([\w.\-+/*\\]+?)__"
        matches = re.findall(pattern, string)

        replacements_found = False

        for match in matches:
            keyword = match.lower()
            keyword = wildcard_normalize(keyword)
            if keyword in local_wildcard_dict:
                replacement = random_gen.choice(local_wildcard_dict[keyword])
                replacements_found = True
                string = string.replace(f"__{match}__", replacement, 1)
            elif '*' in keyword:
                subpattern = keyword.replace('*', '.*').replace('+', '\\+')
                total_patterns = []
                found = False
                for k, v in local_wildcard_dict.items():
                    if re.match(subpattern, k) is not None or re.match(subpattern, k+'/') is not None:
                        total_patterns += v
                        found = True

                if found:
                    replacement = random_gen.choice(total_patterns)
                    replacements_found = True
                    string = string.replace(f"__{match}__", replacement, 1)
            elif '/' not in keyword:
                string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
                string, replacements_found = replace_wildcard(string_fallback)

        return string, replacements_found

    replace_depth = 100
    stop_unwrap = False
    while not stop_unwrap and replace_depth > 1:
        replace_depth -= 1  # prevent infinite loop
        
        option_quantifier = [e.groupdict() for e in RE_WildCardQuantifier.finditer(text)]
        for match in option_quantifier:
            keyword = match['keyword'].lower()
            quantifier = int(match['quantifier']) if match['quantifier'] else 1
            replacement = '__|__'.join([keyword,] * quantifier)
            wilder_keyword = keyword.replace('*', '\\*')
            RE_TEMP = re.compile(fr"(?P<quantifier>\d+)#__(?P<keyword>{wilder_keyword})__", re.IGNORECASE)
            text = RE_TEMP.sub(f"__{replacement}__", text)

        # pass1: replace options
        pass1, is_replaced1 = replace_options(text)

        while is_replaced1:
            pass1, is_replaced1 = replace_options(pass1)

        # pass2: replace wildcards
        text, is_replaced2 = replace_wildcard(pass1)
        stop_unwrap = not is_replaced1 and not is_replaced2

    return text


def is_numeric_string(input_str):
    return re.match(r'^-?(\d*\.?\d+|\d+\.?\d*)$', input_str) is not None


def safe_float(x):
    if is_numeric_string(x):
        return float(x)
    else:
        return 1.0


def extract_lora_values(string):
    pattern = r'<lora:([^>]+)>'
    matches = re.findall(pattern, string)

    def touch_lbw(text):
        return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text)

    items = [touch_lbw(match.strip(':')) for match in matches]

    added = set()
    result = []
    for item in items:
        item = item.split(':')

        lora = None
        a = None
        b = None
        lbw = None
        lbw_a = None
        lbw_b = None

        if len(item) > 0:
            lora = item[0]

            for sub_item in item[1:]:
                if is_numeric_string(sub_item):
                    if a is None:
                        a = float(sub_item)
                    elif b is None:
                        b = float(sub_item)
                elif sub_item.startswith("LBW="):
                    for lbw_item in sub_item[4:].split(';'):
                        if lbw_item.startswith("A="):
                            lbw_a = safe_float(lbw_item[2:].strip())
                        elif lbw_item.startswith("B="):
                            lbw_b = safe_float(lbw_item[2:].strip())
                        elif lbw_item.strip() != '':
                            lbw = lbw_item

        if a is None:
            a = 1.0
        if b is None:
            b = a

        if lora is not None and lora not in added:
            result.append((lora, a, b, lbw, lbw_a, lbw_b))
            added.add(lora)

    return result


def remove_lora_tags(string):
    pattern = r'<lora:[^>]+>'
    result = re.sub(pattern, '', string)

    return result


def resolve_lora_name(lora_name_cache, name):
    if os.path.exists(name):
        return name
    else:
        if len(lora_name_cache) == 0:
            lora_name_cache.extend(folder_paths.get_filename_list("loras"))

        for x in lora_name_cache:
            if x.endswith(name):
                return x


def process_with_loras(wildcard_opt, model, clip, clip_encoder=None, seed=None, processed=None):
    """

    process wildcard text including loras



    :param wildcard_opt: wildcard text

    :param model: model

    :param clip: clip

    :param clip_encoder: you can pass custom encoder such as adv_cliptext_encode

    :param seed: seed for populating

    :param processed: output variable - [pass1, pass2, pass3] will be saved into passed list

    :return: model, clip, conditioning

    """

    lora_name_cache = []

    pass1 = process(wildcard_opt, seed)
    loras = extract_lora_values(pass1)
    pass2 = remove_lora_tags(pass1)

    for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b in loras:
        lora_name_ext = lora_name.split('.')
        if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions:
            lora_name = lora_name+".safetensors"

        orig_lora_name = lora_name
        lora_name = resolve_lora_name(lora_name_cache, lora_name)

        if lora_name is not None:
            path = folder_paths.get_full_path("loras", lora_name)
        else:
            path = None

        if path is not None:
            print(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}")

            def default_lora():
                return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight)

            if lbw is not None:
                if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS:
                    utils.try_install_custom_node(
                        'https://github.com/ltdrdata/ComfyUI-Inspire-Pack',
                        "To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.")

                    print(f"'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.")
                    model, clip = default_lora()
                else:
                    cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire']
                    model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw)
            else:
                model, clip = default_lora()
        else:
            print(f"LORA NOT FOUND: {orig_lora_name}")

    pass3 = [x.strip() for x in pass2.split("BREAK")]
    pass3 = [x for x in pass3 if x != '']

    if len(pass3) == 0:
        pass3 = ['']

    pass3_str = [f'[{x}]' for x in pass3]
    print(f"CLIP: {str.join(' + ', pass3_str)}")

    result = None

    for prompt in pass3:
        if clip_encoder is None:
            cur = nodes.CLIPTextEncode().encode(clip, prompt)[0]
        else:
            cur = clip_encoder.encode(clip, prompt)[0]

        if result is not None:
            result = nodes.ConditioningConcat().concat(result, cur)[0]
        else:
            result = cur

    if processed is not None:
        processed.append(pass1)
        processed.append(pass2)
        processed.append(pass3)

    return model, clip, result


def starts_with_regex(pattern, text):
    regex = re.compile(pattern)
    return regex.match(text)


def split_to_dict(text):
    pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)'
    matches = re.findall(pattern, text)

    result_dict = {key: value.strip() for key, value in matches}

    return result_dict


class WildcardChooser:
    def __init__(self, items, randomize_when_exhaust):
        self.i = 0
        self.items = items
        self.randomize_when_exhaust = randomize_when_exhaust

    def get(self, seg):
        if self.i >= len(self.items):
            self.i = 0
            if self.randomize_when_exhaust:
                random.shuffle(self.items)

        item = self.items[self.i]
        self.i += 1

        return item


class WildcardChooserDict:
    def __init__(self, items):
        self.items = items

    def get(self, seg):
        text = ""
        if 'ALL' in self.items:
            text = self.items['ALL']

        if seg.label in self.items:
            text += self.items[seg.label]

        return text


def split_string_with_sep(input_string):
    sep_pattern = r'\[SEP(?:\:\w+)?\]'

    substrings = re.split(sep_pattern, input_string)

    result_list = [None]
    matches = re.findall(sep_pattern, input_string)
    for i, substring in enumerate(substrings):
        result_list.append(substring)
        if i < len(matches):
            if matches[i] == '[SEP]':
                result_list.append(None)
            elif matches[i] == '[SEP:R]':
                result_list.append(random.randint(0, 1125899906842624))
            else:
                try:
                    seed = int(matches[i][5:-1])
                except:
                    seed = None
                result_list.append(seed)

    iterable = iter(result_list)
    return list(zip(iterable, iterable))


def process_wildcard_for_segs(wildcard):
    if wildcard.startswith('[LAB]'):
        raw_items = split_to_dict(wildcard)

        items = {}
        for k, v in raw_items.items():
            v = v.strip()
            if v != '':
                items[k] = v

        return 'LAB', WildcardChooserDict(items)

    else:
        match = starts_with_regex(r"\[(ASC-SIZE|DSC-SIZE|ASC|DSC|RND)\]", wildcard)

        if match:
            mode = match[1]
            items = split_string_with_sep(wildcard[len(match[0]):])

            if mode == 'RND':
                random.shuffle(items)
                return mode, WildcardChooser(items, True)
            else:
                return mode, WildcardChooser(items, False)

        else:
            return None, WildcardChooser([(None, wildcard)], False)


def wildcard_load():
    global wildcard_dict
    wildcard_dict = {}

    with wildcard_lock:
        read_wildcard_dict(wildcards_path)

        try:
            read_wildcard_dict(config.get_config()['custom_wildcards'])
        except Exception as e:
            print(f"[Impact Pack] Failed to load custom wildcards directory.")

        print(f"[Impact Pack] Wildcards loading done.")