Spaces:
Running
Running
File size: 19,195 Bytes
c37b2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import re
import random
import os
import nodes
import folder_paths
import yaml
import numpy as np
import threading
from impact import utils
from impact import config
wildcards_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "wildcards"))
RE_WildCardQuantifier = re.compile(r"(?P<quantifier>\d+)#__(?P<keyword>[\w.\-+/*\\]+?)__", re.IGNORECASE)
wildcard_lock = threading.Lock()
wildcard_dict = {}
def get_wildcard_list():
with wildcard_lock:
return [f"__{x}__" for x in wildcard_dict.keys()]
def get_wildcard_dict():
global wildcard_dict
with wildcard_lock:
return wildcard_dict
def wildcard_normalize(x):
return x.replace("\\", "/").replace(' ', '-').lower()
def read_wildcard(k, v):
if isinstance(v, list):
k = wildcard_normalize(k)
wildcard_dict[k] = v
elif isinstance(v, dict):
for k2, v2 in v.items():
new_key = f"{k}/{k2}"
new_key = wildcard_normalize(new_key)
read_wildcard(new_key, v2)
elif isinstance(v, str):
k = wildcard_normalize(k)
wildcard_dict[k] = [v]
def read_wildcard_dict(wildcard_path):
global wildcard_dict
for root, directories, files in os.walk(wildcard_path, followlinks=True):
for file in files:
if file.endswith('.txt'):
file_path = os.path.join(root, file)
rel_path = os.path.relpath(file_path, wildcard_path)
key = wildcard_normalize(os.path.splitext(rel_path)[0])
try:
with open(file_path, 'r', encoding="ISO-8859-1") as f:
lines = f.read().splitlines()
wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')]
except yaml.reader.ReaderError:
with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
lines = f.read().splitlines()
wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')]
elif file.endswith('.yaml'):
file_path = os.path.join(root, file)
try:
with open(file_path, 'r', encoding="ISO-8859-1") as f:
yaml_data = yaml.load(f, Loader=yaml.FullLoader)
except yaml.reader.ReaderError as e:
with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
yaml_data = yaml.load(f, Loader=yaml.FullLoader)
for k, v in yaml_data.items():
read_wildcard(k, v)
return wildcard_dict
def process_comment_out(text):
lines = text.split('\n')
lines0 = []
flag = False
for line in lines:
if line.lstrip().startswith('#'):
flag = True
continue
if len(lines0) == 0:
lines0.append(line)
elif flag:
lines0[-1] += ' ' + line
flag = False
else:
lines0.append(line)
return '\n'.join(lines0)
def process(text, seed=None):
text = process_comment_out(text)
if seed is not None:
random.seed(seed)
random_gen = np.random.default_rng(seed)
local_wildcard_dict = get_wildcard_dict()
def replace_options(string):
replacements_found = False
def replace_option(match):
nonlocal replacements_found
options = match.group(1).split('|')
multi_select_pattern = options[0].split('$$')
select_range = None
select_sep = ' '
range_pattern = r'(\d+)(-(\d+))?'
range_pattern2 = r'-(\d+)'
wildcard_pattern = r"__([\w.\-+/*\\]+?)__"
if len(multi_select_pattern) > 1:
r = re.match(range_pattern, options[0])
if r is None:
r = re.match(range_pattern2, options[0])
a = '1'
b = r.group(1).strip()
else:
a = r.group(1).strip()
b = r.group(3)
if b is not None:
b = b.strip()
if r is not None:
if b is not None and is_numeric_string(a) and is_numeric_string(b):
# PATTERN: num1-num2
select_range = int(a), int(b)
elif is_numeric_string(a):
# PATTERN: num
x = int(a)
select_range = (x, x)
if select_range is not None and len(multi_select_pattern) == 2:
# PATTERN: count$$
matches = re.findall(wildcard_pattern, multi_select_pattern[1])
if len(options) == 1 and matches:
# count$$<single wildcard>
options = get_wildcard_options(multi_select_pattern[1])
else:
# count$$opt1|opt2|...
options[0] = multi_select_pattern[1]
elif select_range is not None and len(multi_select_pattern) == 3:
# PATTERN: count$$ sep $$
select_sep = multi_select_pattern[1]
options[0] = multi_select_pattern[2]
adjusted_probabilities = []
total_prob = 0
for option in options:
parts = option.split('::', 1)
if len(parts) == 2 and is_numeric_string(parts[0].strip()):
config_value = float(parts[0].strip())
else:
config_value = 1 # Default value if no configuration is provided
adjusted_probabilities.append(config_value)
total_prob += config_value
normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities]
if select_range is None:
select_count = 1
else:
select_count = random_gen.integers(low=select_range[0], high=select_range[1]+1, size=1)
if select_count > len(options):
random_gen.shuffle(options)
selected_items = options
else:
selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False)
selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', x, 1) for x in selected_items]
replacement = select_sep.join(selected_items2)
if '::' in replacement:
pass
replacements_found = True
return replacement
pattern = r'{([^{}]*?)}'
replaced_string = re.sub(pattern, replace_option, string)
return replaced_string, replacements_found
def get_wildcard_options(string):
pattern = r"__([\w.\-+/*\\]+?)__"
matches = re.findall(pattern, string)
options = []
for match in matches:
keyword = match.lower()
keyword = wildcard_normalize(keyword)
if keyword in local_wildcard_dict:
options.extend(local_wildcard_dict[keyword])
elif '*' in keyword:
subpattern = keyword.replace('*', '.*').replace('+', '\\+')
total_patterns = []
found = False
for k, v in local_wildcard_dict.items():
if re.match(subpattern, k) is not None or re.match(subpattern, k+'/') is not None:
total_patterns += v
found = True
if found:
options.extend(total_patterns)
elif '/' not in keyword:
string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
options.extend(get_wildcard_options(string_fallback))
return options
def replace_wildcard(string):
pattern = r"__([\w.\-+/*\\]+?)__"
matches = re.findall(pattern, string)
replacements_found = False
for match in matches:
keyword = match.lower()
keyword = wildcard_normalize(keyword)
if keyword in local_wildcard_dict:
replacement = random_gen.choice(local_wildcard_dict[keyword])
replacements_found = True
string = string.replace(f"__{match}__", replacement, 1)
elif '*' in keyword:
subpattern = keyword.replace('*', '.*').replace('+', '\\+')
total_patterns = []
found = False
for k, v in local_wildcard_dict.items():
if re.match(subpattern, k) is not None or re.match(subpattern, k+'/') is not None:
total_patterns += v
found = True
if found:
replacement = random_gen.choice(total_patterns)
replacements_found = True
string = string.replace(f"__{match}__", replacement, 1)
elif '/' not in keyword:
string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
string, replacements_found = replace_wildcard(string_fallback)
return string, replacements_found
replace_depth = 100
stop_unwrap = False
while not stop_unwrap and replace_depth > 1:
replace_depth -= 1 # prevent infinite loop
option_quantifier = [e.groupdict() for e in RE_WildCardQuantifier.finditer(text)]
for match in option_quantifier:
keyword = match['keyword'].lower()
quantifier = int(match['quantifier']) if match['quantifier'] else 1
replacement = '__|__'.join([keyword,] * quantifier)
wilder_keyword = keyword.replace('*', '\\*')
RE_TEMP = re.compile(fr"(?P<quantifier>\d+)#__(?P<keyword>{wilder_keyword})__", re.IGNORECASE)
text = RE_TEMP.sub(f"__{replacement}__", text)
# pass1: replace options
pass1, is_replaced1 = replace_options(text)
while is_replaced1:
pass1, is_replaced1 = replace_options(pass1)
# pass2: replace wildcards
text, is_replaced2 = replace_wildcard(pass1)
stop_unwrap = not is_replaced1 and not is_replaced2
return text
def is_numeric_string(input_str):
return re.match(r'^-?(\d*\.?\d+|\d+\.?\d*)$', input_str) is not None
def safe_float(x):
if is_numeric_string(x):
return float(x)
else:
return 1.0
def extract_lora_values(string):
pattern = r'<lora:([^>]+)>'
matches = re.findall(pattern, string)
def touch_lbw(text):
return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text)
items = [touch_lbw(match.strip(':')) for match in matches]
added = set()
result = []
for item in items:
item = item.split(':')
lora = None
a = None
b = None
lbw = None
lbw_a = None
lbw_b = None
if len(item) > 0:
lora = item[0]
for sub_item in item[1:]:
if is_numeric_string(sub_item):
if a is None:
a = float(sub_item)
elif b is None:
b = float(sub_item)
elif sub_item.startswith("LBW="):
for lbw_item in sub_item[4:].split(';'):
if lbw_item.startswith("A="):
lbw_a = safe_float(lbw_item[2:].strip())
elif lbw_item.startswith("B="):
lbw_b = safe_float(lbw_item[2:].strip())
elif lbw_item.strip() != '':
lbw = lbw_item
if a is None:
a = 1.0
if b is None:
b = a
if lora is not None and lora not in added:
result.append((lora, a, b, lbw, lbw_a, lbw_b))
added.add(lora)
return result
def remove_lora_tags(string):
pattern = r'<lora:[^>]+>'
result = re.sub(pattern, '', string)
return result
def resolve_lora_name(lora_name_cache, name):
if os.path.exists(name):
return name
else:
if len(lora_name_cache) == 0:
lora_name_cache.extend(folder_paths.get_filename_list("loras"))
for x in lora_name_cache:
if x.endswith(name):
return x
def process_with_loras(wildcard_opt, model, clip, clip_encoder=None, seed=None, processed=None):
"""
process wildcard text including loras
:param wildcard_opt: wildcard text
:param model: model
:param clip: clip
:param clip_encoder: you can pass custom encoder such as adv_cliptext_encode
:param seed: seed for populating
:param processed: output variable - [pass1, pass2, pass3] will be saved into passed list
:return: model, clip, conditioning
"""
lora_name_cache = []
pass1 = process(wildcard_opt, seed)
loras = extract_lora_values(pass1)
pass2 = remove_lora_tags(pass1)
for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b in loras:
lora_name_ext = lora_name.split('.')
if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions:
lora_name = lora_name+".safetensors"
orig_lora_name = lora_name
lora_name = resolve_lora_name(lora_name_cache, lora_name)
if lora_name is not None:
path = folder_paths.get_full_path("loras", lora_name)
else:
path = None
if path is not None:
print(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}")
def default_lora():
return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight)
if lbw is not None:
if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node(
'https://github.com/ltdrdata/ComfyUI-Inspire-Pack',
"To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.")
print(f"'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.")
model, clip = default_lora()
else:
cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire']
model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw)
else:
model, clip = default_lora()
else:
print(f"LORA NOT FOUND: {orig_lora_name}")
pass3 = [x.strip() for x in pass2.split("BREAK")]
pass3 = [x for x in pass3 if x != '']
if len(pass3) == 0:
pass3 = ['']
pass3_str = [f'[{x}]' for x in pass3]
print(f"CLIP: {str.join(' + ', pass3_str)}")
result = None
for prompt in pass3:
if clip_encoder is None:
cur = nodes.CLIPTextEncode().encode(clip, prompt)[0]
else:
cur = clip_encoder.encode(clip, prompt)[0]
if result is not None:
result = nodes.ConditioningConcat().concat(result, cur)[0]
else:
result = cur
if processed is not None:
processed.append(pass1)
processed.append(pass2)
processed.append(pass3)
return model, clip, result
def starts_with_regex(pattern, text):
regex = re.compile(pattern)
return regex.match(text)
def split_to_dict(text):
pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)'
matches = re.findall(pattern, text)
result_dict = {key: value.strip() for key, value in matches}
return result_dict
class WildcardChooser:
def __init__(self, items, randomize_when_exhaust):
self.i = 0
self.items = items
self.randomize_when_exhaust = randomize_when_exhaust
def get(self, seg):
if self.i >= len(self.items):
self.i = 0
if self.randomize_when_exhaust:
random.shuffle(self.items)
item = self.items[self.i]
self.i += 1
return item
class WildcardChooserDict:
def __init__(self, items):
self.items = items
def get(self, seg):
text = ""
if 'ALL' in self.items:
text = self.items['ALL']
if seg.label in self.items:
text += self.items[seg.label]
return text
def split_string_with_sep(input_string):
sep_pattern = r'\[SEP(?:\:\w+)?\]'
substrings = re.split(sep_pattern, input_string)
result_list = [None]
matches = re.findall(sep_pattern, input_string)
for i, substring in enumerate(substrings):
result_list.append(substring)
if i < len(matches):
if matches[i] == '[SEP]':
result_list.append(None)
elif matches[i] == '[SEP:R]':
result_list.append(random.randint(0, 1125899906842624))
else:
try:
seed = int(matches[i][5:-1])
except:
seed = None
result_list.append(seed)
iterable = iter(result_list)
return list(zip(iterable, iterable))
def process_wildcard_for_segs(wildcard):
if wildcard.startswith('[LAB]'):
raw_items = split_to_dict(wildcard)
items = {}
for k, v in raw_items.items():
v = v.strip()
if v != '':
items[k] = v
return 'LAB', WildcardChooserDict(items)
else:
match = starts_with_regex(r"\[(ASC-SIZE|DSC-SIZE|ASC|DSC|RND)\]", wildcard)
if match:
mode = match[1]
items = split_string_with_sep(wildcard[len(match[0]):])
if mode == 'RND':
random.shuffle(items)
return mode, WildcardChooser(items, True)
else:
return mode, WildcardChooser(items, False)
else:
return None, WildcardChooser([(None, wildcard)], False)
def wildcard_load():
global wildcard_dict
wildcard_dict = {}
with wildcard_lock:
read_wildcard_dict(wildcards_path)
try:
read_wildcard_dict(config.get_config()['custom_wildcards'])
except Exception as e:
print(f"[Impact Pack] Failed to load custom wildcards directory.")
print(f"[Impact Pack] Wildcards loading done.")
|