File size: 10,819 Bytes
583c1c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
""" huggingface model adapter



Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.

"""

import re

import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import TensorType
try:
    import transformers
    from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
    from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
        BaseModelOutputWithPoolingAndCrossAttentions
except ImportError as e:
    transformers = None


    class BaseModelOutput:
        pass


    class PretrainedConfig:
        pass

from .hf_configs import arch_dict

# utils
def _camel2snake(s):
    return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()

# TODO: ?last - for gpt-like models
_POOLERS = {}

def register_pooler(cls):
    """Decorator registering pooler class"""
    _POOLERS[_camel2snake(cls.__name__)] = cls
    return cls


@register_pooler
class MeanPooler(nn.Module):
    """Mean pooling"""
    def forward(self, x:BaseModelOutput, attention_mask:TensorType):
        masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
        return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)

@register_pooler
class MaxPooler(nn.Module):
    """Max pooling"""
    def forward(self, x:BaseModelOutput, attention_mask:TensorType):
        masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
        return masked_output.max(1).values

@register_pooler
class ClsPooler(nn.Module):
    """CLS token pooling"""
    def __init__(self, use_pooler_output=True):
        super().__init__()
        self.cls_token_position = 0
        self.use_pooler_output = use_pooler_output

    def forward(self, x:BaseModelOutput, attention_mask:TensorType):
        
        if (self.use_pooler_output and 
            isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
            (x.pooler_output is not None)
            ):
            return x.pooler_output
        
        return x.last_hidden_state[:, self.cls_token_position, :]

class HFTextEncoder(nn.Module):
    """HuggingFace model adapter"""
    def __init__(

            self, 

            model_name_or_path: str,

            output_dim: int,

            tokenizer_name: str = None,

            config: PretrainedConfig = None,

            pooler_type: str = None,

            proj: str = None,

            pretrained: bool = True,

            masked_language_modeling: bool = False):
        super().__init__()

        self.output_dim = output_dim

        # TODO: find better way to get this information
        uses_transformer_pooler = (pooler_type == "cls_pooler")

        if transformers is None:
            raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
        if config is None:
            self.config = AutoConfig.from_pretrained(model_name_or_path)
            if masked_language_modeling:
                create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
                    AutoModelForMaskedLM.from_config, self.config)
            else:
                create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
                    AutoModel.from_config, self.config)
            # TODO: do all model configs have this attribute? PretrainedConfig does so yes??
            if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
                self.transformer = create_func(model_args)
                self.transformer = self.transformer.encoder
            else:
                self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
        else:
            self.config = config
            if masked_language_modeling:
                self.transformer = AutoModelForMaskedLM.from_config(config)
            else:
                self.transformer = AutoModel.from_config(config)

        if pooler_type is None: # get default arch pooler
            self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
        else:
            self.pooler = _POOLERS[pooler_type]()

        d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
        if (d_model == output_dim) and (proj is None): # do we always need a proj?
            self.proj = nn.Identity()
        elif proj == 'linear':
            self.proj = nn.Linear(d_model, output_dim, bias=False)
        elif proj == 'mlp':
            hidden_size = (d_model + output_dim) // 2
            self.proj = nn.Sequential(
                nn.Linear(d_model, hidden_size, bias=False),
                nn.GELU(),
                nn.Linear(hidden_size, output_dim, bias=False),
            )

        # self.itm_proj = nn.Linear(d_model, 2, bias=False)
        # self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

    # def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
    #     image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)  
    #     attn_mask = (x != self.config.pad_token_id).long()
    #     out = self.transformer(
    #         input_ids=x, 
    #         attention_mask=attn_mask,
    #         encoder_hidden_states = image_embeds,
    #         encoder_attention_mask = image_atts,
    #         )
    #     pooled_out = self.pooler(out, attn_mask)

    #     return self.itm_proj(pooled_out)

    def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
        if masked_indices is None:                                       
            masked_indices = torch.bernoulli(probability_matrix).bool()
                                               
        masked_indices[input_ids == self.tokenizer.pad_token_id] = False
        masked_indices[input_ids == self.tokenizer.cls_token_id] = False
        
        if targets is not None:
            targets[~masked_indices] = -100 # We only compute loss on masked tokens            

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
        input_ids[indices_replaced] = self.tokenizer.mask_token_id

        # 10% of the time, we replace masked input tokens with random word
        indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
        random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
        input_ids[indices_random] = random_words[indices_random]                     
        # The rest of the time (10% of the time) we keep the masked input tokens unchanged   
        
        if targets is not None:
            return input_ids, targets
        else:
            return input_ids

    def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
        labels = input_ids.clone()
        attn_mask = (input_ids != self.config.pad_token_id).long()
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) 
        vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
        probability_matrix = torch.full(labels.shape, mlm_probability)
        input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
                                      probability_matrix = probability_matrix)
        mlm_output = self.transformer(input_ids,
                        attention_mask = attn_mask,
                        encoder_hidden_states = image_embeds,
                        encoder_attention_mask = image_atts,
                        return_dict = True,
                        labels = labels,
                    )
        return mlm_output.loss
        # mlm_output = self.transformer(input_ids,
        #                 attention_mask = attn_mask,
        #                 encoder_hidden_states = image_embeds,
        #                 encoder_attention_mask = image_atts,
        #                 return_dict = True,
        #             ).last_hidden_state
        # logits = self.mlm_proj(mlm_output)

        # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
        # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
        # labels = labels[:, 1:].contiguous().view(-1)

        # mlm_loss = F.cross_entropy(
        #     logits,
        #     labels,
        #     # label_smoothing=0.1,
        # )
        # return mlm_loss


    def forward(self, x:TensorType) -> TensorType:
        attn_mask = (x != self.config.pad_token_id).long()
        out = self.transformer(input_ids=x, attention_mask=attn_mask)
        pooled_out = self.pooler(out, attn_mask)

        return self.proj(pooled_out)

    def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
        if not unlocked_layers: # full freezing
             for n, p in self.transformer.named_parameters():
                 p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
             return

        encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
        layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
        print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
        embeddings = getattr(
            self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
        modules = [embeddings, *layer_list][:-unlocked_layers]
        # freeze layers
        for module in modules:
            for n, p in module.named_parameters():
                p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False


    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.transformer.gradient_checkpointing_enable()

    def get_num_layers(self):
        encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
        layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
        return len(layer_list)

    def init_parameters(self):
        pass