File size: 2,160 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681fa96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
import comfy.model_management as model_management

class Depth_Anything_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            ckpt_name=INPUT.COMBO(
                ["depth_anything_vitl14.pth", "depth_anything_vitb14.pth", "depth_anything_vits14.pth"]
            ),
            resolution=INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"

    def execute(self, image, ckpt_name="depth_anything_vitl14.pth", resolution=512, **kwargs):
        from custom_controlnet_aux.depth_anything import DepthAnythingDetector

        model = DepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution)
        del model
        return (out, )

class Zoe_Depth_Anything_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            environment=INPUT.COMBO(["indoor", "outdoor"]),
            resolution=INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"

    def execute(self, image, environment="indoor", resolution=512, **kwargs):
        from custom_controlnet_aux.zoe import ZoeDepthAnythingDetector
        ckpt_name = "depth_anything_metric_depth_indoor.pt" if environment == "indoor" else "depth_anything_metric_depth_outdoor.pt"
        model = ZoeDepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution)
        del model
        return (out, )

NODE_CLASS_MAPPINGS = {
    "DepthAnythingPreprocessor": Depth_Anything_Preprocessor,
    "Zoe_DepthAnythingPreprocessor": Zoe_Depth_Anything_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "DepthAnythingPreprocessor": "Depth Anything",
    "Zoe_DepthAnythingPreprocessor": "Zoe Depth Anything"
}