File size: 2,245 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681fa96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
import comfy.model_management as model_management
import numpy as np

class MIDAS_Normal_Map_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            a=INPUT.FLOAT(default=np.pi * 2.0, min=0.0, max=np.pi * 5.0),
            bg_threshold=INPUT.FLOAT(default=0.1),
            resolution=INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"

    def execute(self, image, a=np.pi * 2.0, bg_threshold=0.1, resolution=512, **kwargs):
        from custom_controlnet_aux.midas import MidasDetector

        model = MidasDetector.from_pretrained().to(model_management.get_torch_device())
        #Dirty hack :))
        cb = lambda image, **kargs: model(image, **kargs)[1]
        out = common_annotator_call(cb, image, resolution=resolution, a=a, bg_th=bg_threshold, depth_and_normal=True)
        del model
        return (out, )

class MIDAS_Depth_Map_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            a=INPUT.FLOAT(default=np.pi * 2.0, min=0.0, max=np.pi * 5.0),
            bg_threshold=INPUT.FLOAT(default=0.1),
            resolution=INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"

    def execute(self, image, a=np.pi * 2.0, bg_threshold=0.1, resolution=512, **kwargs):
        from custom_controlnet_aux.midas import MidasDetector

        # Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
        model = MidasDetector.from_pretrained().to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution, a=a, bg_th=bg_threshold)
        del model
        return (out, )

NODE_CLASS_MAPPINGS = {
    "MiDaS-NormalMapPreprocessor": MIDAS_Normal_Map_Preprocessor,
    "MiDaS-DepthMapPreprocessor": MIDAS_Depth_Map_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "MiDaS-NormalMapPreprocessor": "MiDaS Normal Map",
    "MiDaS-DepthMapPreprocessor": "MiDaS Depth Map"
}