File size: 12,925 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import folder_paths
import json
import os
import numpy as np
import cv2
from PIL import ImageColor
from einops import rearrange
import torch
import itertools

from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses


"""
Format of POSE_KEYPOINT (AP10K keypoints):
[{
        "version": "ap10k",
        "animals": [
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            ...
        ],
        "canvas_height": 512,
        "canvas_width": 768
},...]
Format of POSE_KEYPOINT (OpenPose keypoints):
[{
    "people": [
        {
            'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]]
            "face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]],
            "hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
            "hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
        }
    ],
    "canvas_height": canvas_height,
    "canvas_width": canvas_width,
},...]
"""

class SavePoseKpsAsJsonFile:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "pose_kps": ("POSE_KEYPOINT",),
                "filename_prefix": ("STRING", {"default": "PoseKeypoint"})
            }
        }
    RETURN_TYPES = ()
    FUNCTION = "save_pose_kps"
    OUTPUT_NODE = True
    CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""
    def save_pose_kps(self, pose_kps, filename_prefix):
        filename_prefix += self.prefix_append
        full_output_folder, filename, counter, subfolder, filename_prefix = \
            folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"])
        file = f"{filename}_{counter:05}.json"
        with open(os.path.join(full_output_folder, file), 'w') as f:
            json.dump(pose_kps , f)
        return {}

#COCO-Wholebody doesn't have eyebrows as it inherits 68 keypoints format
#Perhaps eyebrows can be estimated tho
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"]
LAPA_COLORS = dict(
    skin="rgb(0, 153, 255)",
    left_eye="rgb(0, 204, 153)",
    right_eye="rgb(255, 153, 0)",
    nose="rgb(255, 102, 255)",
    upper_lip="rgb(102, 0, 51)",
    inner_mouth="rgb(255, 204, 255)",
    lower_lip="rgb(255, 0, 102)"
)

#One-based index
def kps_idxs(start, end):
    step = -1 if start > end else 1
    return list(range(start-1, end+1-1, step))

#Source: https://www.researchgate.net/profile/Fabrizio-Falchi/publication/338048224/figure/fig1/AS:837860722741255@1576772971540/68-facial-landmarks.jpg
FACIAL_PART_RANGES = dict(
    skin=kps_idxs(1, 17) + kps_idxs(27, 18),
    nose=kps_idxs(28, 36),
    left_eye=kps_idxs(37, 42),
    right_eye=kps_idxs(43, 48),
    upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61),
    lower_lip=kps_idxs(61, 68),
    inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49)
)

def is_normalized(keypoints) -> bool:
    point_normalized = [
        0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1 
        for k in keypoints 
        if k is not None
    ]
    if not point_normalized:
        return False
    return np.all(point_normalized)

class FacialPartColoringFromPoseKps:
    @classmethod
    def INPUT_TYPES(s):
        input_types = {
            "required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})}
        }
        for facial_part in FACIAL_PARTS: 
            input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False})
        return input_types
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "colorize"
    CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
    def colorize(self, pose_kps, mode, **facial_part_colors):
        pose_frames = pose_kps
        np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames]
        np_frames = np.stack(np_frames, axis=0)
        return (torch.from_numpy(np_frames).float() / 255.,)
            
    def draw_kps(self, pose_frame, mode, **facial_part_colors):
        width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
        canvas = np.zeros((height, width, 3), dtype=np.uint8)
        for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS):
            n = len(person["face_keypoints_2d"]) // 3
            facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2]
            if is_normalized(facial_kps):
                facial_kps *= (width, height)
            facial_kps = facial_kps.astype(np.int32)
            part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3]
            part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :]
            if mode == "point":
                for pt in part_contours:
                    cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1)
            else:
                cv2.fillPoly(canvas, pts=[part_contours], color=part_color)
        return canvas

# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/keypoints_pose_18.png
BODY_PART_INDEXES = {
    "Head": (16, 14, 0, 15, 17),
    "Neck": (0, 1),
    "Shoulder": (2, 5),
    "Torso": (2, 5, 8, 11),
    "RArm": (2, 3),
    "RForearm": (3, 4),
    "LArm": (5, 6),
    "LForearm": (6, 7),
    "RThigh": (8, 9),
    "RLeg": (9, 10),
    "LThigh": (11, 12),
    "LLeg": (12, 13)
}
BODY_PART_DEFAULT_W_H = {
    "Head": "256, 256",
    "Neck": "100, 100",
    "Shoulder": '',
    "Torso": "350, 450",
    "RArm": "128, 256",
    "RForearm": "128, 256",
    "LArm": "128, 256",
    "LForearm": "128, 256",
    "RThigh": "128, 256",
    "RLeg": "128, 256",
    "LThigh": "128, 256",
    "LLeg": "128, 256"
}

class SinglePersonProcess:
    @classmethod 
    def sort_and_get_max_people(s, pose_kps):
        for idx in range(len(pose_kps)):
            pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0])
        return pose_kps, max(len(frame["people"]) for frame in pose_kps)
    
    def __init__(self, pose_kps, person_idx=0) -> None:
        self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]
        self.poses = [
            self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"])
            if person_idx < len(pose_frame["people"]) 
            else None
            for pose_frame in pose_kps
        ]
    
    def normalize(self, pose_kps_2d):
        n = len(pose_kps_2d) // 3
        pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3)
        pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 #Safe large value
        pose_kps_2d = pose_kps_2d[:, :2]
        if is_normalized(pose_kps_2d):
            pose_kps_2d *= (self.width, self.height)
        return pose_kps_2d
    
    def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)):
        width, height = bbox_size
        xyxy_bboxes = {}
        for idx, pose in enumerate(self.poses):
            if pose is None:
                xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4
                continue
            pts = pose[BODY_PART_INDEXES[part_name], :]

            #top_left = np.min(pts[:,0]), np.min(pts[:,1])
            #bottom_right = np.max(pts[:,0]), np.max(pts[:,1])
            #pad_width = np.maximum(width - (bottom_right[0]-top_left[0]), 0) / 2
            #pad_height = np.maximum(height - (bottom_right[1]-top_left[1]), 0) / 2
            #xyxy_bboxes.append((
            #    top_left[0] - pad_width, top_left[1] - pad_height,
            #    bottom_right[0] + pad_width, bottom_right[1] + pad_height,
            #))

            x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1])
            xyxy_bboxes[idx] = (
                x_mid - width/2, y_mid - height/2,
                x_mid + width/2, y_mid + height/2 
            )
        return xyxy_bboxes

class UpperBodyTrackingFromPoseKps:
    PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"]

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "pose_kps": ("POSE_KEYPOINT",),
                "id_include": ("STRING", {"default": '', "multiline": False}),
                **{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES}
            }
        }

    RETURN_TYPES = ("TRACKING", "STRING")
    RETURN_NAMES = ("tracking", "prompt")
    FUNCTION = "convert"
    CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"

    def convert(self, pose_kps, id_include, **parts_width_height):
        parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()}
        enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())]
        tracked = {part_name: {} for part_name in enabled_part_names}
        id_include = id_include.strip()
        id_include = list(map(int, id_include.split(','))) if len(id_include) else []
        prompt_string = ''
        pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps)

        for person_idx in range(max_people):
            if len(id_include) and person_idx not in id_include:
                continue
            processor = SinglePersonProcess(pose_kps, person_idx)
            for part_name in enabled_part_names:
                bbox_size = tuple(map(int, parts_width_height[part_name].split(',')))
                part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size)
                id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()}
                tracked[part_name][person_idx] = id_coordinates

        for class_name, class_data in tracked.items():
            for class_id in class_data.keys():
                class_id_str = str(class_id)
                # Use the incoming prompt for each class name and ID
                _class_name = class_name.replace('L', '').replace('R', '').lower()
                prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n'

        return (tracked, prompt_string)


def numpy2torch(np_image: np.ndarray) -> torch.Tensor:
    """ [H, W, C] => [B=1, H, W, C]"""
    return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0)


class RenderPeopleKps:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "kps": ("POSE_KEYPOINT",),
                "render_body": ("BOOLEAN", {"default": True}),
                "render_hand": ("BOOLEAN", {"default": True}),
                "render_face": ("BOOLEAN", {"default": True}),
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "render"
    CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"

    def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]:
        if isinstance(kps, list):
            kps = kps[0]

        poses, _, height, width = decode_json_as_poses(kps)
        np_image = draw_poses(
            poses,
            height,
            width,
            render_body,
            render_hand,
            render_face,
        )
        return (numpy2torch(np_image),)

class RenderAnimalKps:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "kps": ("POSE_KEYPOINT",),
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "render"
    CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"

    def render(self, kps) -> tuple[np.ndarray]:
        if isinstance(kps, list):
            kps = kps[0]

        _, poses, height, width = decode_json_as_poses(kps)
        np_image = draw_animalposes(poses, height, width)
        return (numpy2torch(np_image),)


NODE_CLASS_MAPPINGS = {
    "SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile,
    "FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps,
    "UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps,
    "RenderPeopleKps": RenderPeopleKps,
    "RenderAnimalKps": RenderAnimalKps,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "SavePoseKpsAsJsonFile": "Save Pose Keypoints",
    "FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS",
    "UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)",
    "RenderPeopleKps": "Render Pose JSON (Human)",
    "RenderAnimalKps": "Render Pose JSON (Animal)",
}