Spaces:
Running
Running
File size: 14,584 Bytes
07f408f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import random
import tempfile
import warnings
from contextlib import suppress
from pathlib import Path
import cv2
import numpy as np
import torch
from huggingface_hub import constants, hf_hub_download
from torch.hub import get_dir, download_url_to_file
from ast import literal_eval
TORCHHUB_PATH = Path(__file__).parent / 'depth_anything' / 'torchhub'
HF_MODEL_NAME = "lllyasviel/Annotators"
DWPOSE_MODEL_NAME = "yzd-v/DWPose"
BDS_MODEL_NAME = "bdsqlsz/qinglong_controlnet-lllite"
DENSEPOSE_MODEL_NAME = "LayerNorm/DensePose-TorchScript-with-hint-image"
MESH_GRAPHORMER_MODEL_NAME = "hr16/ControlNet-HandRefiner-pruned"
SAM_MODEL_NAME = "dhkim2810/MobileSAM"
UNIMATCH_MODEL_NAME = "hr16/Unimatch"
DEPTH_ANYTHING_MODEL_NAME = "LiheYoung/Depth-Anything" #HF Space
DIFFUSION_EDGE_MODEL_NAME = "hr16/Diffusion-Edge"
METRIC3D_MODEL_NAME = "JUGGHM/Metric3D"
DEPTH_ANYTHING_V2_MODEL_NAME_DICT = {
"depth_anything_v2_vits.pth": "depth-anything/Depth-Anything-V2-Small",
"depth_anything_v2_vitb.pth": "depth-anything/Depth-Anything-V2-Base",
"depth_anything_v2_vitl.pth": "depth-anything/Depth-Anything-V2-Large",
"depth_anything_v2_vitg.pth": "depth-anything/Depth-Anything-V2-Giant",
"depth_anything_v2_metric_vkitti_vitl.pth": "depth-anything/Depth-Anything-V2-Metric-VKITTI-Large",
"depth_anything_v2_metric_hypersim_vitl.pth": "depth-anything/Depth-Anything-V2-Metric-Hypersim-Large"
}
temp_dir = tempfile.gettempdir()
annotator_ckpts_path = os.path.join(Path(__file__).parents[2], 'ckpts')
USE_SYMLINKS = False
try:
annotator_ckpts_path = os.environ['AUX_ANNOTATOR_CKPTS_PATH']
except:
warnings.warn("Custom pressesor model path not set successfully.")
pass
try:
USE_SYMLINKS = literal_eval(os.environ['AUX_USE_SYMLINKS'])
except:
warnings.warn("USE_SYMLINKS not set successfully. Using default value: False to download models.")
pass
try:
temp_dir = os.environ['AUX_TEMP_DIR']
if len(temp_dir) >= 60:
warnings.warn(f"custom temp dir is too long. Using default")
temp_dir = tempfile.gettempdir()
except:
warnings.warn(f"custom temp dir not set successfully")
pass
here = Path(__file__).parent.resolve()
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def make_noise_disk(H, W, C, F, rng=None):
if rng:
noise = rng.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
else:
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
noise = noise[F: F + H, F: F + W]
noise -= np.min(noise)
noise /= np.max(noise)
if C == 1:
noise = noise[:, :, None]
return noise
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def min_max_norm(x):
x -= np.min(x)
x /= np.maximum(np.max(x), 1e-5)
return x
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def img2mask(img, H, W, low=10, high=90):
assert img.ndim == 3 or img.ndim == 2
assert img.dtype == np.uint8
if img.ndim == 3:
y = img[:, :, random.randrange(0, img.shape[2])]
else:
y = img
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
if random.uniform(0, 1) < 0.5:
y = 255 - y
return y < np.percentile(y, random.randrange(low, high))
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"]
def get_upscale_method(method_str):
assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}"
return getattr(cv2, method_str)
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17
#Added upscale_method, mode params
def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
if resolution == 0:
return img, lambda x: x
k = float(resolution) / float(min(H_raw, W_raw))
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)
def remove_pad(x):
return safer_memory(x[:H_target, :W_target, ...])
return safer_memory(img_padded), remove_pad
def common_input_validate(input_image, output_type, **kwargs):
if "img" in kwargs:
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
input_image = kwargs.pop("img")
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
if output_type:
output_type = "pil"
if input_image is None:
raise ValueError("input_image must be defined.")
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
output_type = output_type or "pil"
else:
output_type = output_type or "np"
return (input_image, output_type)
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
#https://stackoverflow.com/a/44873382
#Assume that the minimum version of Python ppl use is 3.9
def sha256sum(file_path):
import hashlib
h = hashlib.sha256()
b = bytearray(128*1024)
mv = memoryview(b)
with open(file_path, 'rb', buffering=0) as f:
while n := f.readinto(mv):
h.update(mv[:n])
return h.hexdigest()
def check_hash_from_torch_hub(file_path, filename):
basename, _ = filename.split('.')
_, ref_hash = basename.split('-')
curr_hash = sha256sum(file_path)
return curr_hash[:len(ref_hash)] == ref_hash
def custom_torch_download(filename, ckpts_dir=annotator_ckpts_path):
local_dir = os.path.join(get_dir(), 'checkpoints')
model_path = os.path.join(local_dir, filename)
if not os.path.exists(model_path):
print(f"Failed to find {model_path}.\n Downloading from pytorch.org")
local_dir = os.path.join(ckpts_dir, "torch")
if not os.path.exists(local_dir):
os.mkdir(local_dir)
model_path = os.path.join(local_dir, filename)
if not os.path.exists(model_path):
model_url = "https://download.pytorch.org/models/"+filename
try:
download_url_to_file(url = model_url, dst = model_path)
except:
warnings.warn(f"SSL verify failed, try use HTTP instead. {filename}'s hash will be checked")
download_url_to_file(url = model_url, dst = model_path)
assert check_hash_from_torch_hub(model_path, filename), f"Hash check failed as file {filename} is corrupted"
print("Hash check passed")
print(f"model_path is {model_path}")
return model_path
def custom_hf_download(pretrained_model_or_path, filename, cache_dir=temp_dir, ckpts_dir=annotator_ckpts_path, subfolder='', use_symlinks=USE_SYMLINKS, repo_type="model"):
local_dir = os.path.join(ckpts_dir, pretrained_model_or_path)
model_path = os.path.join(local_dir, *subfolder.split('/'), filename)
if len(str(model_path)) >= 255:
warnings.warn(f"Path {model_path} is too long, \n please change annotator_ckpts_path in config.yaml")
if not os.path.exists(model_path):
print(f"Failed to find {model_path}.\n Downloading from huggingface.co")
print(f"cacher folder is {cache_dir}, you can change it by custom_tmp_path in config.yaml")
if use_symlinks:
cache_dir_d = constants.HF_HUB_CACHE # use huggingface newer env variables `HF_HUB_CACHE`
if cache_dir_d is None:
import platform
if platform.system() == "Windows":
cache_dir_d = os.path.join(os.getenv("USERPROFILE"), ".cache", "huggingface", "hub")
else:
cache_dir_d = os.path.join(os.getenv("HOME"), ".cache", "huggingface", "hub")
try:
# test_link
Path(cache_dir_d).mkdir(parents=True, exist_ok=True)
Path(ckpts_dir).mkdir(parents=True, exist_ok=True)
(Path(cache_dir_d) / f"linktest_{filename}.txt").touch()
# symlink instead of link avoid `invalid cross-device link` error.
os.symlink(os.path.join(cache_dir_d, f"linktest_{filename}.txt"), os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
print("Using symlinks to download models. \n",\
"Make sure you have enough space on your cache folder. \n",\
"And do not purge the cache folder after downloading.\n",\
"Otherwise, you will have to re-download the models every time you run the script.\n",\
"You can use USE_SYMLINKS: False in config.yaml to avoid this behavior.")
except:
print("Maybe not able to create symlink. Disable using symlinks.")
use_symlinks = False
cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)
finally: # always remove test link files
with suppress(FileNotFoundError):
os.remove(os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
os.remove(os.path.join(cache_dir_d, f"linktest_{filename}.txt"))
else:
cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)
model_path = hf_hub_download(repo_id=pretrained_model_or_path,
cache_dir=cache_dir_d,
local_dir=local_dir,
subfolder=subfolder,
filename=filename,
local_dir_use_symlinks=use_symlinks,
resume_download=True,
etag_timeout=100,
repo_type=repo_type
)
if not use_symlinks:
try:
import shutil
shutil.rmtree(os.path.join(cache_dir, "ckpts"))
except Exception as e :
print(e)
print(f"model_path is {model_path}")
return model_path
|