File size: 14,584 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import random
import tempfile
import warnings
from contextlib import suppress
from pathlib import Path

import cv2
import numpy as np
import torch
from huggingface_hub import constants, hf_hub_download
from torch.hub import get_dir, download_url_to_file
from ast import literal_eval


TORCHHUB_PATH = Path(__file__).parent / 'depth_anything' / 'torchhub'
HF_MODEL_NAME = "lllyasviel/Annotators"
DWPOSE_MODEL_NAME = "yzd-v/DWPose"
BDS_MODEL_NAME = "bdsqlsz/qinglong_controlnet-lllite"
DENSEPOSE_MODEL_NAME = "LayerNorm/DensePose-TorchScript-with-hint-image"
MESH_GRAPHORMER_MODEL_NAME = "hr16/ControlNet-HandRefiner-pruned"
SAM_MODEL_NAME = "dhkim2810/MobileSAM"
UNIMATCH_MODEL_NAME = "hr16/Unimatch"
DEPTH_ANYTHING_MODEL_NAME = "LiheYoung/Depth-Anything" #HF Space
DIFFUSION_EDGE_MODEL_NAME = "hr16/Diffusion-Edge"
METRIC3D_MODEL_NAME = "JUGGHM/Metric3D"

DEPTH_ANYTHING_V2_MODEL_NAME_DICT = {
    "depth_anything_v2_vits.pth": "depth-anything/Depth-Anything-V2-Small",
    "depth_anything_v2_vitb.pth": "depth-anything/Depth-Anything-V2-Base",
    "depth_anything_v2_vitl.pth": "depth-anything/Depth-Anything-V2-Large",
    "depth_anything_v2_vitg.pth": "depth-anything/Depth-Anything-V2-Giant",
    "depth_anything_v2_metric_vkitti_vitl.pth": "depth-anything/Depth-Anything-V2-Metric-VKITTI-Large",
    "depth_anything_v2_metric_hypersim_vitl.pth": "depth-anything/Depth-Anything-V2-Metric-Hypersim-Large"
}

temp_dir = tempfile.gettempdir()
annotator_ckpts_path = os.path.join(Path(__file__).parents[2], 'ckpts')
USE_SYMLINKS = False

try:
    annotator_ckpts_path = os.environ['AUX_ANNOTATOR_CKPTS_PATH']
except:
    warnings.warn("Custom pressesor model path not set successfully.")
    pass

try:
    USE_SYMLINKS = literal_eval(os.environ['AUX_USE_SYMLINKS'])
except:
    warnings.warn("USE_SYMLINKS not set successfully. Using default value: False to download models.")
    pass

try:
    temp_dir = os.environ['AUX_TEMP_DIR']
    if len(temp_dir) >= 60:
        warnings.warn(f"custom temp dir is too long. Using default")
        temp_dir = tempfile.gettempdir()
except:
    warnings.warn(f"custom temp dir not set successfully")
    pass

here = Path(__file__).parent.resolve()

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def make_noise_disk(H, W, C, F, rng=None):
    if rng:
        noise = rng.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
    else:
        noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
    noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
    noise = noise[F: F + H, F: F + W]
    noise -= np.min(noise)
    noise /= np.max(noise)
    if C == 1:
        noise = noise[:, :, None]
    return noise


def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

def min_max_norm(x):
    x -= np.min(x)
    x /= np.maximum(np.max(x), 1e-5)
    return x


def safe_step(x, step=2):
    y = x.astype(np.float32) * float(step + 1)
    y = y.astype(np.int32).astype(np.float32) / float(step)
    return y


def img2mask(img, H, W, low=10, high=90):
    assert img.ndim == 3 or img.ndim == 2
    assert img.dtype == np.uint8

    if img.ndim == 3:
        y = img[:, :, random.randrange(0, img.shape[2])]
    else:
        y = img

    y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)

    if random.uniform(0, 1) < 0.5:
        y = 255 - y

    return y < np.percentile(y, random.randrange(low, high))

def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()

UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"]
def get_upscale_method(method_str):
    assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}"
    return getattr(cv2, method_str)

def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)

#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17
#Added upscale_method, mode params
def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'):
    if skip_hwc3:
        img = input_image
    else:
        img = HWC3(input_image)
    H_raw, W_raw, _ = img.shape
    if resolution == 0:
        return img, lambda x: x
    k = float(resolution) / float(min(H_raw, W_raw))
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target, ...])

    return safer_memory(img_padded), remove_pad
    
def common_input_validate(input_image, output_type, **kwargs):
    if "img" in kwargs:
            warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
            input_image = kwargs.pop("img")
    
    if "return_pil" in kwargs:
            warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
            output_type = "pil" if kwargs["return_pil"] else "np"
    
    if type(output_type) is bool:
        warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
        if output_type:
            output_type = "pil"

    if input_image is None:
        raise ValueError("input_image must be defined.")

    if not isinstance(input_image, np.ndarray):
        input_image = np.array(input_image, dtype=np.uint8)
        output_type = output_type or "pil"
    else:
        output_type = output_type or "np"
    
    return (input_image, output_type)

def torch_gc():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()


def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
            [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
            [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
            [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
            [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
            [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
            [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
            [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
            [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
            [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
            [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
            [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
            [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
            [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
            [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
            [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
            [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
            [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
            [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
            [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
            [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
            [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
            [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
            [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
            [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
            [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
            [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
            [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
            [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
            [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
            [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
            [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
            [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
            [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
            [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
            [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
            [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
            [102, 255, 0], [92, 0, 255]]

#https://stackoverflow.com/a/44873382
#Assume that the minimum version of Python ppl use is 3.9
def sha256sum(file_path):
    import hashlib
    h  = hashlib.sha256()
    b  = bytearray(128*1024)
    mv = memoryview(b)
    with open(file_path, 'rb', buffering=0) as f:
        while n := f.readinto(mv):
            h.update(mv[:n])
    return h.hexdigest()

def check_hash_from_torch_hub(file_path, filename):
    basename, _ = filename.split('.')
    _, ref_hash = basename.split('-')
    curr_hash = sha256sum(file_path)
    return curr_hash[:len(ref_hash)] == ref_hash

def custom_torch_download(filename, ckpts_dir=annotator_ckpts_path):
    local_dir = os.path.join(get_dir(), 'checkpoints')
    model_path = os.path.join(local_dir, filename)

    if not os.path.exists(model_path):
        print(f"Failed to find {model_path}.\n Downloading from pytorch.org")
        local_dir = os.path.join(ckpts_dir, "torch")
        if not os.path.exists(local_dir):
            os.mkdir(local_dir)

        model_path = os.path.join(local_dir, filename)

        if not os.path.exists(model_path):
            model_url = "https://download.pytorch.org/models/"+filename
            try:
                download_url_to_file(url = model_url, dst = model_path)
            except:
                warnings.warn(f"SSL verify failed, try use HTTP instead. {filename}'s hash will be checked")
                download_url_to_file(url = model_url, dst = model_path)
                assert check_hash_from_torch_hub(model_path, filename), f"Hash check failed as file {filename} is corrupted"
                print("Hash check passed")
    
    print(f"model_path is {model_path}")
    return model_path

def custom_hf_download(pretrained_model_or_path, filename, cache_dir=temp_dir, ckpts_dir=annotator_ckpts_path, subfolder='', use_symlinks=USE_SYMLINKS, repo_type="model"):

    local_dir = os.path.join(ckpts_dir, pretrained_model_or_path)
    model_path = os.path.join(local_dir, *subfolder.split('/'), filename)

    if len(str(model_path)) >= 255:
        warnings.warn(f"Path {model_path} is too long, \n please change annotator_ckpts_path in config.yaml")

    if not os.path.exists(model_path):
        print(f"Failed to find {model_path}.\n Downloading from huggingface.co")
        print(f"cacher folder is {cache_dir}, you can change it by custom_tmp_path in config.yaml")
        if use_symlinks:
            cache_dir_d = constants.HF_HUB_CACHE    # use huggingface newer env variables `HF_HUB_CACHE`
            if cache_dir_d is None:
                import platform
                if platform.system() == "Windows":
                    cache_dir_d = os.path.join(os.getenv("USERPROFILE"), ".cache", "huggingface", "hub")
                else:
                    cache_dir_d = os.path.join(os.getenv("HOME"), ".cache", "huggingface", "hub")
            try:
                # test_link
                Path(cache_dir_d).mkdir(parents=True, exist_ok=True)
                Path(ckpts_dir).mkdir(parents=True, exist_ok=True)
                (Path(cache_dir_d) / f"linktest_{filename}.txt").touch()
                # symlink instead of link avoid `invalid cross-device link` error.
                os.symlink(os.path.join(cache_dir_d, f"linktest_{filename}.txt"), os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
                print("Using symlinks to download models. \n",\
                      "Make sure you have enough space on your cache folder. \n",\
                      "And do not purge the cache folder after downloading.\n",\
                      "Otherwise, you will have to re-download the models every time you run the script.\n",\
                      "You can use USE_SYMLINKS: False in config.yaml to avoid this behavior.")
            except:
                print("Maybe not able to create symlink. Disable using symlinks.")
                use_symlinks = False
                cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)
            finally:    # always remove test link files
                with suppress(FileNotFoundError):
                    os.remove(os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
                    os.remove(os.path.join(cache_dir_d, f"linktest_{filename}.txt"))
        else:
            cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)

        model_path = hf_hub_download(repo_id=pretrained_model_or_path,
            cache_dir=cache_dir_d,
            local_dir=local_dir,
            subfolder=subfolder,
            filename=filename,
            local_dir_use_symlinks=use_symlinks,
            resume_download=True,
            etag_timeout=100,
            repo_type=repo_type
        )
        if not use_symlinks:
            try:
                import shutil
                shutil.rmtree(os.path.join(cache_dir, "ckpts"))
            except Exception as e :
                print(e)

    print(f"model_path is {model_path}")

    return model_path