File size: 12,199 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os

import numpy as np
import torch
from torch.nn import Module

from custom_manopth.smpl_handpca_wrapper_HAND_only import ready_arguments
from custom_manopth import rodrigues_layer, rotproj, rot6d
from custom_manopth.tensutils import (th_posemap_axisang, th_with_zeros, th_pack,
                               subtract_flat_id, make_list)


class ManoLayer(Module):
    __constants__ = [
        'use_pca', 'rot', 'ncomps', 'ncomps', 'kintree_parents', 'check',
        'side', 'center_idx', 'joint_rot_mode'
    ]

    def __init__(self,
                 center_idx=None,
                 flat_hand_mean=True,
                 ncomps=6,
                 side='right',
                 mano_root='mano/models',
                 use_pca=True,
                 root_rot_mode='axisang',
                 joint_rot_mode='axisang',
                 robust_rot=False):
        """
        Args:
            center_idx: index of center joint in our computations,
                if -1 centers on estimate of palm as middle of base
                of middle finger and wrist
            flat_hand_mean: if True, (0, 0, 0, ...) pose coefficients match
                flat hand, else match average hand pose
            mano_root: path to MANO pkl files for left and right hand
            ncomps: number of PCA components form pose space (<45)
            side: 'right' or 'left'
            use_pca: Use PCA decomposition for pose space.
            joint_rot_mode: 'axisang' or 'rotmat', ignored if use_pca
        """
        super().__init__()

        self.center_idx = center_idx
        self.robust_rot = robust_rot
        if root_rot_mode == 'axisang':
            self.rot = 3
        else:
            self.rot = 6
        self.flat_hand_mean = flat_hand_mean
        self.side = side
        self.use_pca = use_pca
        self.joint_rot_mode = joint_rot_mode
        self.root_rot_mode = root_rot_mode
        if use_pca:
            self.ncomps = ncomps
        else:
            self.ncomps = 45

        if side == 'right':
            self.mano_path = os.path.join(mano_root, 'MANO_RIGHT.pkl')
        elif side == 'left':
            self.mano_path = os.path.join(mano_root, 'MANO_LEFT.pkl')

        smpl_data = ready_arguments(self.mano_path)

        hands_components = smpl_data['hands_components']

        self.smpl_data = smpl_data

        self.register_buffer('th_betas',
                             torch.Tensor(smpl_data['betas']).unsqueeze(0))
        self.register_buffer('th_shapedirs',
                             torch.Tensor(smpl_data['shapedirs']))
        self.register_buffer('th_posedirs',
                             torch.Tensor(smpl_data['posedirs']))
        self.register_buffer(
            'th_v_template',
            torch.Tensor(smpl_data['v_template']).unsqueeze(0))
        self.register_buffer(
            'th_J_regressor',
            torch.Tensor(np.array(smpl_data['J_regressor'].toarray())))
        self.register_buffer('th_weights',
                             torch.Tensor(smpl_data['weights']))
        self.register_buffer('th_faces',
                             torch.Tensor(smpl_data['f'].astype(np.int32)).long())

        # Get hand mean
        hands_mean = np.zeros(hands_components.shape[1]
                              ) if flat_hand_mean else smpl_data['hands_mean']
        hands_mean = hands_mean.copy()
        th_hands_mean = torch.Tensor(hands_mean).unsqueeze(0)
        if self.use_pca or self.joint_rot_mode == 'axisang':
            # Save as axis-angle
            self.register_buffer('th_hands_mean', th_hands_mean)
            selected_components = hands_components[:ncomps]
            self.register_buffer('th_comps', torch.Tensor(hands_components))
            self.register_buffer('th_selected_comps',
                                 torch.Tensor(selected_components))
        else:
            th_hands_mean_rotmat = rodrigues_layer.batch_rodrigues(
                th_hands_mean.view(15, 3)).reshape(15, 3, 3)
            self.register_buffer('th_hands_mean_rotmat', th_hands_mean_rotmat)

        # Kinematic chain params
        self.kintree_table = smpl_data['kintree_table']
        parents = list(self.kintree_table[0].tolist())
        self.kintree_parents = parents

    def forward(self,
                th_pose_coeffs,
                th_betas=torch.zeros(1),
                th_trans=torch.zeros(1),
                root_palm=torch.Tensor([0]),
                share_betas=torch.Tensor([0]),
                ):
        """
        Args:
        th_trans (Tensor (batch_size x ncomps)): if provided, applies trans to joints and vertices
        th_betas (Tensor (batch_size x 10)): if provided, uses given shape parameters for hand shape
        else centers on root joint (9th joint)
        root_palm: return palm as hand root instead of wrist
        """
        # if len(th_pose_coeffs) == 0:
        #     return th_pose_coeffs.new_empty(0), th_pose_coeffs.new_empty(0)

        batch_size = th_pose_coeffs.shape[0]
        # Get axis angle from PCA components and coefficients
        if self.use_pca or self.joint_rot_mode == 'axisang':
            # Remove global rot coeffs
            th_hand_pose_coeffs = th_pose_coeffs[:, self.rot:self.rot +
                                                 self.ncomps]
            if self.use_pca:
                # PCA components --> axis angles
                th_full_hand_pose = th_hand_pose_coeffs.mm(self.th_selected_comps)
            else:
                th_full_hand_pose = th_hand_pose_coeffs

            # Concatenate back global rot
            th_full_pose = torch.cat([
                th_pose_coeffs[:, :self.rot],
                self.th_hands_mean + th_full_hand_pose
            ], 1)
            if self.root_rot_mode == 'axisang':
                # compute rotation matrixes from axis-angle while skipping global rotation
                th_pose_map, th_rot_map = th_posemap_axisang(th_full_pose)
                root_rot = th_rot_map[:, :9].view(batch_size, 3, 3)
                th_rot_map = th_rot_map[:, 9:]
                th_pose_map = th_pose_map[:, 9:]
            else:
                # th_posemap offsets by 3, so add offset or 3 to get to self.rot=6
                th_pose_map, th_rot_map = th_posemap_axisang(th_full_pose[:, 6:])
                if self.robust_rot:
                    root_rot = rot6d.robust_compute_rotation_matrix_from_ortho6d(th_full_pose[:, :6])
                else:
                    root_rot = rot6d.compute_rotation_matrix_from_ortho6d(th_full_pose[:, :6])
        else:
            assert th_pose_coeffs.dim() == 4, (
                'When not self.use_pca, '
                'th_pose_coeffs should have 4 dims, got {}'.format(
                    th_pose_coeffs.dim()))
            assert th_pose_coeffs.shape[2:4] == (3, 3), (
                'When not self.use_pca, th_pose_coeffs have 3x3 matrix for two'
                'last dims, got {}'.format(th_pose_coeffs.shape[2:4]))
            th_pose_rots = rotproj.batch_rotprojs(th_pose_coeffs)
            th_rot_map = th_pose_rots[:, 1:].view(batch_size, -1)
            th_pose_map = subtract_flat_id(th_rot_map)
            root_rot = th_pose_rots[:, 0]

        # Full axis angle representation with root joint
        if th_betas is None or th_betas.numel() == 1:
            th_v_shaped = torch.matmul(self.th_shapedirs,
                                       self.th_betas.transpose(1, 0)).permute(
                                           2, 0, 1) + self.th_v_template
            th_j = torch.matmul(self.th_J_regressor, th_v_shaped).repeat(
                batch_size, 1, 1)

        else:
            if share_betas:
                th_betas = th_betas.mean(0, keepdim=True).expand(th_betas.shape[0], 10)
            th_v_shaped = torch.matmul(self.th_shapedirs,
                                       th_betas.transpose(1, 0)).permute(
                                           2, 0, 1) + self.th_v_template
            th_j = torch.matmul(self.th_J_regressor, th_v_shaped)
            # th_pose_map should have shape 20x135

        th_v_posed = th_v_shaped + torch.matmul(
            self.th_posedirs, th_pose_map.transpose(0, 1)).permute(2, 0, 1)
        # Final T pose with transformation done !

        # Global rigid transformation

        root_j = th_j[:, 0, :].contiguous().view(batch_size, 3, 1)
        root_trans = th_with_zeros(torch.cat([root_rot, root_j], 2))

        all_rots = th_rot_map.view(th_rot_map.shape[0], 15, 3, 3)
        lev1_idxs = [1, 4, 7, 10, 13]
        lev2_idxs = [2, 5, 8, 11, 14]
        lev3_idxs = [3, 6, 9, 12, 15]
        lev1_rots = all_rots[:, [idx - 1 for idx in lev1_idxs]]
        lev2_rots = all_rots[:, [idx - 1 for idx in lev2_idxs]]
        lev3_rots = all_rots[:, [idx - 1 for idx in lev3_idxs]]
        lev1_j = th_j[:, lev1_idxs]
        lev2_j = th_j[:, lev2_idxs]
        lev3_j = th_j[:, lev3_idxs]

        # From base to tips
        # Get lev1 results
        all_transforms = [root_trans.unsqueeze(1)]
        lev1_j_rel = lev1_j - root_j.transpose(1, 2)
        lev1_rel_transform_flt = th_with_zeros(torch.cat([lev1_rots, lev1_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
        root_trans_flt = root_trans.unsqueeze(1).repeat(1, 5, 1, 1).view(root_trans.shape[0] * 5, 4, 4)
        lev1_flt = torch.matmul(root_trans_flt, lev1_rel_transform_flt)
        all_transforms.append(lev1_flt.view(all_rots.shape[0], 5, 4, 4))

        # Get lev2 results
        lev2_j_rel = lev2_j - lev1_j
        lev2_rel_transform_flt = th_with_zeros(torch.cat([lev2_rots, lev2_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
        lev2_flt = torch.matmul(lev1_flt, lev2_rel_transform_flt)
        all_transforms.append(lev2_flt.view(all_rots.shape[0], 5, 4, 4))

        # Get lev3 results
        lev3_j_rel = lev3_j - lev2_j
        lev3_rel_transform_flt = th_with_zeros(torch.cat([lev3_rots, lev3_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
        lev3_flt = torch.matmul(lev2_flt, lev3_rel_transform_flt)
        all_transforms.append(lev3_flt.view(all_rots.shape[0], 5, 4, 4))

        reorder_idxs = [0, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]
        th_results = torch.cat(all_transforms, 1)[:, reorder_idxs]
        th_results_global = th_results

        joint_js = torch.cat([th_j, th_j.new_zeros(th_j.shape[0], 16, 1)], 2)
        tmp2 = torch.matmul(th_results, joint_js.unsqueeze(3))
        th_results2 = (th_results - torch.cat([tmp2.new_zeros(*tmp2.shape[:2], 4, 3), tmp2], 3)).permute(0, 2, 3, 1)

        th_T = torch.matmul(th_results2, self.th_weights.transpose(0, 1))

        th_rest_shape_h = torch.cat([
            th_v_posed.transpose(2, 1),
            torch.ones((batch_size, 1, th_v_posed.shape[1]),
                       dtype=th_T.dtype,
                       device=th_T.device),
        ], 1)

        th_verts = (th_T * th_rest_shape_h.unsqueeze(1)).sum(2).transpose(2, 1)
        th_verts = th_verts[:, :, :3]
        th_jtr = th_results_global[:, :, :3, 3]
        # In addition to MANO reference joints we sample vertices on each finger
        # to serve as finger tips
        if self.side == 'right':
            tips = th_verts[:, [745, 317, 444, 556, 673]]
        else:
            tips = th_verts[:, [745, 317, 445, 556, 673]]
        if bool(root_palm):
            palm = (th_verts[:, 95] + th_verts[:, 22]).unsqueeze(1) / 2
            th_jtr = torch.cat([palm, th_jtr[:, 1:]], 1)
        th_jtr = torch.cat([th_jtr, tips], 1)

        # Reorder joints to match visualization utilities
        th_jtr = th_jtr[:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]]

        if th_trans is None or bool(torch.norm(th_trans) == 0):
            if self.center_idx is not None:
                center_joint = th_jtr[:, self.center_idx].unsqueeze(1)
                th_jtr = th_jtr - center_joint
                th_verts = th_verts - center_joint
        else:
            th_jtr = th_jtr + th_trans.unsqueeze(1)
            th_verts = th_verts + th_trans.unsqueeze(1)

        # Scale to milimeters
        th_verts = th_verts * 1000
        th_jtr = th_jtr * 1000
        return th_verts, th_jtr