gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
46 kB
#taken from: https://github.com/lllyasviel/ControlNet
#and modified
#and then taken from comfy/cldm/cldm.py and modified again
from abc import ABC, abstractmethod
import copy
import math
import numpy as np
from typing import Iterable, Union
import torch
import torch as th
import torch.nn as nn
from torch import Tensor
from einops import rearrange, repeat
from comfy.ldm.modules.diffusionmodules.util import (
zero_module,
timestep_embedding,
)
from comfy.cli_args import args
from comfy.cldm.cldm import ControlNet as ControlNetCLDM
from comfy.ldm.modules.attention import SpatialTransformer
from comfy.ldm.modules.attention import attention_basic, attention_pytorch, attention_split, attention_sub_quad, default
from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
from comfy.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential
from comfy.model_patcher import ModelPatcher
import comfy.ops
import comfy.model_management
import comfy.utils
from .logger import logger
from .utils import (BIGMAX, AbstractPreprocWrapper, disable_weight_init_clean_groupnorm,
prepare_mask_batch, broadcast_image_to_extend, extend_to_batch_size)
# until xformers bug is fixed, do not use xformers for VersatileAttention! TODO: change this when fix is out
# logic for choosing optimized_attention method taken from comfy/ldm/modules/attention.py
# a fallback_attention_mm is selected to avoid CUDA configuration limitation with pytorch's scaled_dot_product
optimized_attention_mm = attention_basic
fallback_attention_mm = attention_basic
if comfy.model_management.xformers_enabled():
pass
#optimized_attention_mm = attention_xformers
if comfy.model_management.pytorch_attention_enabled():
optimized_attention_mm = attention_pytorch
if args.use_split_cross_attention:
fallback_attention_mm = attention_split
else:
fallback_attention_mm = attention_sub_quad
else:
if args.use_split_cross_attention:
optimized_attention_mm = attention_split
else:
optimized_attention_mm = attention_sub_quad
class SparseConst:
HINT_MULT = "sparse_hint_mult"
NONHINT_MULT = "sparse_nonhint_mult"
MASK_MULT = "sparse_mask_mult"
class SparseControlNet(ControlNetCLDM):
def __init__(self, *args,**kwargs):
super().__init__(*args, **kwargs)
hint_channels = kwargs.get("hint_channels")
operations: disable_weight_init_clean_groupnorm = kwargs.get("operations", disable_weight_init_clean_groupnorm)
device = kwargs.get("device", None)
self.use_simplified_conditioning_embedding = kwargs.get("use_simplified_conditioning_embedding", False)
if self.use_simplified_conditioning_embedding:
self.input_hint_block = TimestepEmbedSequential(
zero_module(operations.conv_nd(self.dims, hint_channels, self.model_channels, 3, padding=1, dtype=self.dtype, device=device)),
)
self.motion_wrapper: SparseCtrlMotionWrapper = None
def set_actual_length(self, actual_length: int, full_length: int):
if self.motion_wrapper is not None:
self.motion_wrapper.set_video_length(video_length=actual_length, full_length=full_length)
def forward(self, x: Tensor, hint: Tensor, timesteps, context, y=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
# SparseCtrl sets noisy input to zeros
x = torch.zeros_like(x)
guided_hint = self.input_hint_block(hint, emb, context)
out_output = []
out_middle = []
hs = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
out_output.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
out_middle.append(self.middle_block_out(h, emb, context))
return {"middle": out_middle, "output": out_output}
class SparseModelPatcher(ModelPatcher):
def __init__(self, *args, **kwargs):
self.model: SparseControlNet
super().__init__(*args, **kwargs)
def load(self, device_to=None, lowvram_model_memory=0, *args, **kwargs):
to_return = super().load(device_to=device_to, lowvram_model_memory=lowvram_model_memory, *args, **kwargs)
if lowvram_model_memory > 0:
self._patch_lowvram_extras(device_to=device_to)
self._handle_float8_pe_tensors()
return to_return
def _patch_lowvram_extras(self, device_to=None):
if self.model.motion_wrapper is not None:
# figure out the tensors (likely pe's) that should be cast to device besides just the named_modules
remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
named_modules = []
for n, _ in self.model.motion_wrapper.named_modules():
named_modules.append(n)
named_modules.append(f"{n}.weight")
named_modules.append(f"{n}.bias")
for name in named_modules:
if name in remaining_tensors:
remaining_tensors.remove(name)
for key in remaining_tensors:
self.patch_weight_to_device(key, device_to)
if device_to is not None:
comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).to(device_to))
def _handle_float8_pe_tensors(self):
if self.model.motion_wrapper is not None:
remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
pe_tensors = [x for x in remaining_tensors if '.pe' in x]
is_first = True
for key in pe_tensors:
if is_first:
is_first = False
if comfy.utils.get_attr(self.model.motion_wrapper, key).dtype not in [torch.float8_e5m2, torch.float8_e4m3fn]:
break
comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).half())
# NOTE: no longer called by ComfyUI, but here for backwards compatibility
def patch_model_lowvram(self, device_to=None, *args, **kwargs):
patched_model = super().patch_model_lowvram(device_to, *args, **kwargs)
self._patch_lowvram_extras(device_to=device_to)
return patched_model
def clone(self):
# normal ModelPatcher clone actions
n = SparseModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
if hasattr(n, "patches_uuid"):
self.patches_uuid = n.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
if hasattr(n, "model_keys"):
n.model_keys = self.model_keys
if hasattr(n, "backup"):
self.backup = n.backup
if hasattr(n, "object_patches_backup"):
self.object_patches_backup = n.object_patches_backup
class PreprocSparseRGBWrapper(AbstractPreprocWrapper):
error_msg = error_msg = "Invalid use of RGB SparseCtrl output. The output of RGB SparseCtrl preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply ControlNet node (advanced or otherwise). It cannot be used for anything else that accepts IMAGE input."
def __init__(self, condhint: Tensor):
super().__init__(condhint)
class SparseContextAware:
NEAREST_HINT = "nearest_hint"
OFF = "off"
LIST = [NEAREST_HINT, OFF]
class SparseSettings:
def __init__(self, sparse_method: 'SparseMethod', use_motion: bool=True, motion_strength=1.0, motion_scale=1.0, merged=False,
sparse_mask_mult=1.0, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, context_aware=SparseContextAware.NEAREST_HINT):
# account for Steerable-Motion workflow incompatibility;
# doing this to for my own peace of mind (not an issue with my code)
if type(sparse_method) == str:
logger.warn("Outdated Steerable-Motion workflow detected; attempting to auto-convert indexes input. If you experience an error here, consult Steerable-Motion github, NOT Advanced-ControlNet.")
sparse_method = SparseIndexMethod(get_idx_list_from_str(sparse_method))
self.sparse_method = sparse_method
self.use_motion = use_motion
self.motion_strength = motion_strength
self.motion_scale = motion_scale
self.merged = merged
self.sparse_mask_mult = float(sparse_mask_mult)
self.sparse_hint_mult = float(sparse_hint_mult)
self.sparse_nonhint_mult = float(sparse_nonhint_mult)
self.context_aware = context_aware
def is_context_aware(self):
return self.context_aware != SparseContextAware.OFF
@classmethod
def default(cls):
return SparseSettings(sparse_method=SparseSpreadMethod(), use_motion=True)
class SparseMethod(ABC):
SPREAD = "spread"
INDEX = "index"
def __init__(self, method: str):
self.method = method
@abstractmethod
def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
pass
def get_indexes(self, hint_length: int, full_length: int, sub_idxs: list[int]=None) -> tuple[list[int], list[int]]:
returned_idxs = self._get_indexes(hint_length, full_length)
if sub_idxs is None:
return returned_idxs, None
# need to map full indexes to condhint indexes
index_mapping = {}
for i, value in enumerate(returned_idxs):
index_mapping[value] = i
def get_mapped_idxs(idxs: list[int]):
return [index_mapping[idx] for idx in idxs]
# check if returned_idxs fit within subidxs
fitting_idxs = []
for sub_idx in sub_idxs:
if sub_idx in returned_idxs:
fitting_idxs.append(sub_idx)
# if have any fitting_idxs, deal with it
if len(fitting_idxs) > 0:
return fitting_idxs, get_mapped_idxs(fitting_idxs)
# since no returned_idxs fit in sub_idxs, need to get the next-closest hint images based on strategy
def get_closest_idx(target_idx: int, idxs: list[int]):
min_idx = -1
min_dist = BIGMAX
for idx in idxs:
new_dist = abs(idx-target_idx)
if new_dist < min_dist:
min_idx = idx
min_dist = new_dist
if min_dist == 1:
return min_idx, min_dist
return min_idx, min_dist
start_closest_idx, start_dist = get_closest_idx(sub_idxs[0], returned_idxs)
end_closest_idx, end_dist = get_closest_idx(sub_idxs[-1], returned_idxs)
# if only one cond hint exists, do special behavior
if hint_length == 1:
# if same distance from start and end,
if start_dist == end_dist:
# find center index of sub_idxs
center_idx = sub_idxs[np.linspace(0, len(sub_idxs)-1, 3, endpoint=True, dtype=int)[1]]
return [center_idx], get_mapped_idxs([start_closest_idx])
# otherwise, return closest
if start_dist < end_dist:
return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
# otherwise, select up to two closest images, or just 1, whichever one applies best
# if same distance from start and end, return two images to use
if start_dist == end_dist:
return [sub_idxs[0], sub_idxs[-1]], get_mapped_idxs([start_closest_idx, end_closest_idx])
# else, use just one
if start_dist < end_dist:
return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
class SparseSpreadMethod(SparseMethod):
UNIFORM = "uniform"
STARTING = "starting"
ENDING = "ending"
CENTER = "center"
LIST = [UNIFORM, STARTING, ENDING, CENTER]
def __init__(self, spread=UNIFORM):
super().__init__(self.SPREAD)
self.spread = spread
def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
# if hint_length >= full_length, limit hints to full_length
if hint_length >= full_length:
return list(range(full_length))
# handle special case of 1 hint image
if hint_length == 1:
if self.spread in [self.UNIFORM, self.STARTING]:
return [0]
elif self.spread == self.ENDING:
return [full_length-1]
elif self.spread == self.CENTER:
# return second (of three) values as the center
return [np.linspace(0, full_length-1, 3, endpoint=True, dtype=int)[1]]
else:
raise ValueError(f"Unrecognized spread: {self.spread}")
# otherwise, handle other cases
if self.spread == self.UNIFORM:
return list(np.linspace(0, full_length-1, hint_length, endpoint=True, dtype=int))
elif self.spread == self.STARTING:
# make split 1 larger, remove last element
return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
elif self.spread == self.ENDING:
# make split 1 larger, remove first element
return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[1:]
elif self.spread == self.CENTER:
# if hint length is not 3 greater than full length, do STARTING behavior
if full_length-hint_length < 3:
return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
# otherwise, get linspace of 2 greater than needed, then cut off first and last
return list(np.linspace(0, full_length-1, hint_length+2, endpoint=True, dtype=int))[1:-1]
return ValueError(f"Unrecognized spread: {self.spread}")
class SparseIndexMethod(SparseMethod):
def __init__(self, idxs: list[int]):
super().__init__(self.INDEX)
self.idxs = idxs
def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
orig_hint_length = hint_length
if hint_length > full_length:
hint_length = full_length
# if idxs is less than hint_length, throw error
if len(self.idxs) < hint_length:
err_msg = f"There are not enough indexes ({len(self.idxs)}) provided to fit the usable {hint_length} input images."
if orig_hint_length != hint_length:
err_msg = f"{err_msg} (original input images: {orig_hint_length})"
raise ValueError(err_msg)
# cap idxs to hint_length
idxs = self.idxs[:hint_length]
new_idxs = []
real_idxs = set()
for idx in idxs:
if idx < 0:
real_idx = full_length+idx
if real_idx in real_idxs:
raise ValueError(f"Index '{idx}' maps to '{real_idx}' and is duplicate - indexes in Sparse Index Method must be unique.")
else:
real_idx = idx
if real_idx in real_idxs:
raise ValueError(f"Index '{idx}' is duplicate (or a negative index is equivalent) - indexes in Sparse Index Method must be unique.")
real_idxs.add(real_idx)
new_idxs.append(real_idx)
return new_idxs
def get_idx_list_from_str(indexes: str) -> list[int]:
idxs = []
unique_idxs = set()
# get indeces from string
str_idxs = [x.strip() for x in indexes.strip().split(",")]
for str_idx in str_idxs:
try:
idx = int(str_idx)
if idx in unique_idxs:
raise ValueError(f"'{idx}' is duplicated; indexes must be unique.")
idxs.append(idx)
unique_idxs.add(idx)
except ValueError:
raise ValueError(f"'{str_idx}' is not a valid integer index.")
if len(idxs) == 0:
raise ValueError(f"No indexes were listed in Sparse Index Method.")
return idxs
#########################################
# motion-related portion of controlnet
class BlockType:
UP = "up"
DOWN = "down"
MID = "mid"
def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
return get_block_max(mm_state_dict, "down_blocks")
def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int:
return get_block_max(mm_state_dict, "up_blocks")
def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int:
# keep track of biggest down_block count in module
biggest_block = -1
for key in mm_state_dict.keys():
if block_name in key:
try:
block_int = key.split(".")[1]
block_num = int(block_int)
if block_num > biggest_block:
biggest_block = block_num
except ValueError:
pass
return biggest_block
def has_mid_block(mm_state_dict: dict[str, Tensor]):
# check if keys contain mid_block
for key in mm_state_dict.keys():
if key.startswith("mid_block."):
return True
return False
def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str=None) -> int:
# use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
for key in mm_state_dict.keys():
if key.endswith("pos_encoder.pe"):
return mm_state_dict[key].size(1) # get middle dim
raise ValueError(f"No pos_encoder.pe found in SparseCtrl state_dict - {mm_name} is not a valid SparseCtrl model!")
class SparseCtrlMotionWrapper(nn.Module):
def __init__(self, mm_state_dict: dict[str, Tensor], ops=disable_weight_init_clean_groupnorm):
super().__init__()
self.down_blocks: Iterable[MotionModule] = None
self.up_blocks: Iterable[MotionModule] = None
self.mid_block: MotionModule = None
self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, "")
layer_channels = (320, 640, 1280, 1280)
if get_down_block_max(mm_state_dict) > -1:
self.down_blocks = nn.ModuleList([])
for c in layer_channels:
self.down_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops))
if get_up_block_max(mm_state_dict) > -1:
self.up_blocks = nn.ModuleList([])
for c in reversed(layer_channels):
self.up_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops))
if has_mid_block(mm_state_dict):
self.mid_block = MotionModule(1280, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops)
def inject(self, unet: SparseControlNet):
# inject input (down) blocks
self._inject(unet.input_blocks, self.down_blocks)
# inject mid block, if present
if self.mid_block is not None:
self._inject([unet.middle_block], [self.mid_block])
unet.motion_wrapper = self
def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
# Rules for injection:
# For each component list in a unet block:
# if SpatialTransformer exists in list, place next block after last occurrence
# elif ResBlock exists in list, place next block after first occurrence
# else don't place block
injection_count = 0
unet_idx = 0
# details about blocks passed in
per_block = len(mm_blocks[0].motion_modules)
injection_goal = len(mm_blocks) * per_block
# only stop injecting when modules exhausted
while injection_count < injection_goal:
# figure out which VanillaTemporalModule from mm to inject
mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
# figure out layout of unet block components
st_idx = -1 # SpatialTransformer index
res_idx = -1 # first ResBlock index
# first, figure out indeces of relevant blocks
for idx, component in enumerate(unet_blocks[unet_idx]):
if type(component) == SpatialTransformer:
st_idx = idx
elif type(component).__name__ == "ResBlock" and res_idx < 0:
res_idx = idx
# if SpatialTransformer exists, inject right after
if st_idx >= 0:
unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# otherwise, if only ResBlock exists, inject right after
elif res_idx >= 0:
unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# increment unet_idx
unet_idx += 1
def eject(self, unet: SparseControlNet):
# remove from input blocks (downblocks)
self._eject(unet.input_blocks)
# remove from middle block (encapsulate in list to make compatible)
self._eject([unet.middle_block])
del unet.motion_wrapper
unet.motion_wrapper = None
def _eject(self, unet_blocks: nn.ModuleList):
# eject all VanillaTemporalModule objects from all blocks
for block in unet_blocks:
idx_to_pop = []
for idx, component in enumerate(block):
if type(component) == VanillaTemporalModule:
idx_to_pop.append(idx)
# pop in backwards order, as to not disturb what the indeces refer to
for idx in sorted(idx_to_pop, reverse=True):
block.pop(idx)
def set_video_length(self, video_length: int, full_length: int):
self.AD_video_length = video_length
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_video_length(video_length, full_length)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_video_length(video_length, full_length)
if self.mid_block is not None:
self.mid_block.set_video_length(video_length, full_length)
def set_scale_multiplier(self, multiplier: Union[float, None]):
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_scale_multiplier(multiplier)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_scale_multiplier(multiplier)
if self.mid_block is not None:
self.mid_block.set_scale_multiplier(multiplier)
def set_strength(self, strength: float):
if self.down_blocks is not None:
for block in self.down_blocks:
block.set_strength(strength)
if self.up_blocks is not None:
for block in self.up_blocks:
block.set_strength(strength)
if self.mid_block is not None:
self.mid_block.set_strength(strength)
def reset_temp_vars(self):
if self.down_blocks is not None:
for block in self.down_blocks:
block.reset_temp_vars()
if self.up_blocks is not None:
for block in self.up_blocks:
block.reset_temp_vars()
if self.mid_block is not None:
self.mid_block.reset_temp_vars()
def reset_scale_multiplier(self):
self.set_scale_multiplier(None)
def reset(self):
self.reset_scale_multiplier()
self.reset_temp_vars()
class MotionModule(nn.Module):
def __init__(self, in_channels, temporal_position_encoding_max_len=24, block_type: str=BlockType.DOWN, ops=disable_weight_init_clean_groupnorm):
super().__init__()
if block_type == BlockType.MID:
# mid blocks contain only a single VanillaTemporalModule
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)])
else:
# down blocks contain two VanillaTemporalModules
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList(
[
get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops),
get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)
]
)
# up blocks contain one additional VanillaTemporalModule
if block_type == BlockType.UP:
self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops))
def set_video_length(self, video_length: int, full_length: int):
for motion_module in self.motion_modules:
motion_module.set_video_length(video_length, full_length)
def set_scale_multiplier(self, multiplier: Union[float, None]):
for motion_module in self.motion_modules:
motion_module.set_scale_multiplier(multiplier)
def set_masks(self, masks: Tensor, min_val: float, max_val: float):
for motion_module in self.motion_modules:
motion_module.set_masks(masks, min_val, max_val)
def set_sub_idxs(self, sub_idxs: list[int]):
for motion_module in self.motion_modules:
motion_module.set_sub_idxs(sub_idxs)
def set_strength(self, strength: float):
for motion_module in self.motion_modules:
motion_module.set_strength(strength)
def reset_temp_vars(self):
for motion_module in self.motion_modules:
motion_module.reset_temp_vars()
def get_motion_module(in_channels, temporal_position_encoding_max_len, ops=disable_weight_init_clean_groupnorm):
# unlike normal AD, there is only one attention block expected in SparseCtrl models
return VanillaTemporalModule(in_channels=in_channels, attention_block_types=("Temporal_Self",), temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops)
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=1,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_position_encoding=True,
temporal_position_encoding_max_len=24,
temporal_attention_dim_div=1,
zero_initialize=True,
ops=disable_weight_init_clean_groupnorm,
):
super().__init__()
self.strength = 1.0
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels
// num_attention_heads
// temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(
self.temporal_transformer.proj_out
)
def set_video_length(self, video_length: int, full_length: int):
self.temporal_transformer.set_video_length(video_length, full_length)
def set_scale_multiplier(self, multiplier: Union[float, None]):
self.temporal_transformer.set_scale_multiplier(multiplier)
def set_masks(self, masks: Tensor, min_val: float, max_val: float):
self.temporal_transformer.set_masks(masks, min_val, max_val)
def set_sub_idxs(self, sub_idxs: list[int]):
self.temporal_transformer.set_sub_idxs(sub_idxs)
def set_strength(self, strength: float):
self.strength = strength
def reset_temp_vars(self):
self.set_strength(1.0)
self.temporal_transformer.reset_temp_vars()
def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None):
if math.isclose(self.strength, 1.0):
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)
elif math.isclose(self.strength, 0.0):
return input_tensor
# elif self.strength > 1.0:
# return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength
else:
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength + input_tensor*(1.0-self.strength)
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=disable_weight_init_clean_groupnorm,
):
super().__init__()
self.video_length = 16
self.full_length = 16
self.scale_min = 1.0
self.scale_max = 1.0
self.raw_scale_mask: Union[Tensor, None] = None
self.temp_scale_mask: Union[Tensor, None] = None
self.sub_idxs: Union[list[int], None] = None
self.prev_hidden_states_batch = 0
inner_dim = num_attention_heads * attention_head_dim
self.norm = ops.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = ops.Linear(in_channels, inner_dim)
self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops,
)
for d in range(num_layers)
]
)
self.proj_out = ops.Linear(inner_dim, in_channels)
def set_video_length(self, video_length: int, full_length: int):
self.video_length = video_length
self.full_length = full_length
def set_scale_multiplier(self, multiplier: Union[float, None]):
for block in self.transformer_blocks:
block.set_scale_multiplier(multiplier)
def set_masks(self, masks: Tensor, min_val: float, max_val: float):
self.scale_min = min_val
self.scale_max = max_val
self.raw_scale_mask = masks
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
for block in self.transformer_blocks:
block.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
del self.temp_scale_mask
self.temp_scale_mask = None
self.prev_hidden_states_batch = 0
for block in self.transformer_blocks:
block.reset_temp_vars()
def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]:
# if no raw mask, return None
if self.raw_scale_mask is None:
return None
shape = hidden_states.shape
batch, channel, height, width = shape
# if temp mask already calculated, return it
if self.temp_scale_mask != None:
# check if hidden_states batch matches
if batch == self.prev_hidden_states_batch:
if self.sub_idxs is not None:
return self.temp_scale_mask[:, self.sub_idxs, :]
return self.temp_scale_mask
# if does not match, reset cached temp_scale_mask and recalculate it
del self.temp_scale_mask
self.temp_scale_mask = None
# otherwise, calculate temp mask
self.prev_hidden_states_batch = batch
mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width))
mask = extend_to_batch_size(mask, self.full_length)
# if mask not the same amount length as full length, make it match
if self.full_length != mask.shape[0]:
mask = broadcast_image_to_extend(mask, self.full_length, 1)
# reshape mask to attention K shape (h*w, latent_count, 1)
batch, channel, height, width = mask.shape
# first, perform same operations as on hidden_states,
# turning (b, c, h, w) -> (b, h*w, c)
mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
# then, make it the same shape as attention's k, (h*w, b, c)
mask = mask.permute(1, 0, 2)
# make masks match the expected length of h*w
batched_number = shape[0] // self.video_length
if batched_number > 1:
mask = torch.cat([mask] * batched_number, dim=0)
# cache mask and set to proper device
self.temp_scale_mask = mask
# move temp_scale_mask to proper dtype + device
self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device)
# return subset of masks, if needed
if self.sub_idxs is not None:
return self.temp_scale_mask[:, self.sub_idxs, :]
return self.temp_scale_mask
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch, channel, height, width = hidden_states.shape
residual = hidden_states
scale_mask = self.get_scale_mask(hidden_states)
# add some casts for fp8 purposes - does not affect speed otherwise
hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
video_length=self.video_length,
scale_mask=scale_mask
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=disable_weight_init_clean_groupnorm,
):
super().__init__()
attention_blocks = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
VersatileAttention(
attention_mode=block_name.split("_")[0],
context_dim=cross_attention_dim # called context_dim for ComfyUI impl
if block_name.endswith("_Cross")
else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
#bias=attention_bias, # remove for Comfy CrossAttention
#upcast_attention=upcast_attention, # remove for Comfy CrossAttention
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops,
)
)
norms.append(ops.LayerNorm(dim))
self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
self.ff_norm = ops.LayerNorm(dim)
def set_scale_multiplier(self, multiplier: Union[float, None]):
for block in self.attention_blocks:
block.set_scale_multiplier(multiplier)
def set_sub_idxs(self, sub_idxs: list[int]):
for block in self.attention_blocks:
block.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
for block in self.attention_blocks:
block.reset_temp_vars()
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
scale_mask=None
):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if attention_block.is_cross_attention
else None,
attention_mask=attention_mask,
video_length=video_length,
scale_mask=scale_mask
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.0, max_len=24):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
)
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
self.sub_idxs = None
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
def forward(self, x):
#if self.sub_idxs is not None:
# x = x + self.pe[:, self.sub_idxs]
#else:
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)
class CrossAttentionMMSparse(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None,
operations=disable_weight_init_clean_groupnorm):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.actual_attention = optimized_attention_mm
self.heads = heads
self.dim_head = dim_head
self.scale = None
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def reset_attention_type(self):
self.actual_attention = optimized_attention_mm
def forward(self, x, context=None, value=None, mask=None, scale_mask=None):
q = self.to_q(x)
context = default(context, x)
k: Tensor = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
# apply custom scale by multiplying k by scale factor
if self.scale is not None:
k *= self.scale
# apply scale mask, if present
if scale_mask is not None:
k *= scale_mask
try:
out = self.actual_attention(q, k, v, self.heads, mask)
except RuntimeError as e:
if str(e).startswith("CUDA error: invalid configuration argument"):
self.actual_attention = fallback_attention_mm
out = self.actual_attention(q, k, v, self.heads, mask)
else:
raise
return self.to_out(out)
class VersatileAttention(CrossAttentionMMSparse):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=disable_weight_init_clean_groupnorm,
*args,
**kwargs,
):
super().__init__(operations=ops, *args, **kwargs)
assert attention_mode == "Temporal"
self.attention_mode = attention_mode
self.is_cross_attention = kwargs["context_dim"] is not None
self.pos_encoder = (
PositionalEncoding(
kwargs["query_dim"],
dropout=0.0,
max_len=temporal_position_encoding_max_len,
)
if (temporal_position_encoding and attention_mode == "Temporal")
else None
)
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_scale_multiplier(self, multiplier: Union[float, None]):
if multiplier is None or math.isclose(multiplier, 1.0):
self.scale = None
else:
self.scale = multiplier
def set_sub_idxs(self, sub_idxs: list[int]):
if self.pos_encoder != None:
self.pos_encoder.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
self.reset_attention_type()
def forward(
self,
hidden_states: Tensor,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
scale_mask=None,
):
if self.attention_mode != "Temporal":
raise NotImplementedError
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype)
encoder_hidden_states = (
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
if encoder_hidden_states is not None
else encoder_hidden_states
)
hidden_states = super().forward(
hidden_states,
encoder_hidden_states,
value=None,
mask=attention_mask,
scale_mask=scale_mask,
)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states