gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
2.89 kB
import folder_paths
import comfy.utils
import comfy.model_detection
import comfy.model_management
import comfy.lora
from comfy.model_patcher import ModelPatcher
from .utils import TimestepKeyframeGroup
from .control import ControlNetAdvanced, load_controlnet
def convert_cn_lora_from_diffusers(cn_model: ModelPatcher, lora_path: str):
lora_data = comfy.utils.load_torch_file(lora_path, safe_load=True)
unet_dtype = comfy.model_management.unet_dtype()
for key, value in lora_data.items():
lora_data[key] = value.to(unet_dtype)
diffusers_keys = comfy.utils.unet_to_diffusers(cn_model.model.state_dict())
#lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, dtype=unet_dtype)
#key_map = comfy.lora.model_lora_keys_unet(cn_model.model, key_map)
lora_data = comfy.lora.load_lora(lora_data, to_load=diffusers_keys)
# TODO: detect if diffusers for sure? not sure if needed at this time, since cn loras are
# only used currently for LOOSEControl, and those are all in diffusers format
#unet_dtype = comfy.model_management.unet_dtype()
#lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, unet_dtype)
return lora_data
class ControlNetLoaderWithLoraAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
"cn_lora_name": (folder_paths.get_filename_list("controlnet"), ),
"cn_lora_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/LOOSEControl"
def load_controlnet(self, control_net_name, cn_lora_name, cn_lora_strength: float,
timestep_keyframe: TimestepKeyframeGroup=None
):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet: ControlNetAdvanced = load_controlnet(controlnet_path, timestep_keyframe)
if not isinstance(controlnet, ControlNetAdvanced):
raise ValueError("Type {} is not compatible with CN LoRA features at this time.")
# now, try to load CN LoRA
lora_path = folder_paths.get_full_path("controlnet", cn_lora_name)
lora_data = convert_cn_lora_from_diffusers(cn_model=controlnet.control_model_wrapped, lora_path=lora_path)
# apply patches to wrapped control_model
controlnet.control_model_wrapped.add_patches(lora_data, strength_patch=cn_lora_strength)
# all done
return (controlnet,)