Spaces:
Running
Running
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script | |
import comfy.model_management as model_management | |
import sys | |
def install_deps(): | |
try: | |
import sklearn | |
except: | |
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'scikit-learn']) | |
class DiffusionEdge_Preprocessor: | |
def INPUT_TYPES(s): | |
return define_preprocessor_inputs( | |
environment=INPUT.COMBO(["indoor", "urban", "natrual"]), | |
patch_batch_size=INPUT.INT(default=4, min=1, max=16), | |
resolution=INPUT.RESOLUTION() | |
) | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "ControlNet Preprocessors/Line Extractors" | |
def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs): | |
install_deps() | |
from custom_controlnet_aux.diffusion_edge import DiffusionEdgeDetector | |
model = DiffusionEdgeDetector \ | |
.from_pretrained(filename = f"diffusion_edge_{environment}.pt") \ | |
.to(model_management.get_torch_device()) | |
out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size) | |
del model | |
return (out, ) | |
NODE_CLASS_MAPPINGS = { | |
"DiffusionEdge_Preprocessor": DiffusionEdge_Preprocessor, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"DiffusionEdge_Preprocessor": "Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)", | |
} |