gartajackhats1985's picture
Upload 1633 files
681fa96 verified
raw
history blame
7.67 kB
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, MAX_RESOLUTION, run_script
import comfy.model_management as model_management
import numpy as np
import torch
from einops import rearrange
import os, sys
import subprocess, threading
import scipy.ndimage
import cv2
import torch.nn.functional as F
def install_deps():
try:
import mediapipe
except ImportError:
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'mediapipe'])
run_script([sys.executable, '-s', '-m', 'pip', 'install', '--upgrade', 'protobuf'])
try:
import trimesh
except ImportError:
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'trimesh[easy]'])
#Sauce: https://github.com/comfyanonymous/ComfyUI/blob/8c6493578b3dda233e9b9a953feeaf1e6ca434ad/comfy_extras/nodes_mask.py#L309
def expand_mask(mask, expand, tapered_corners):
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
out = []
for m in mask:
output = m.numpy()
for _ in range(abs(expand)):
if expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
output = torch.from_numpy(output)
out.append(output)
return torch.stack(out, dim=0)
class Mesh_Graphormer_Depth_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
mask_bbox_padding=("INT", {"default": 30, "min": 0, "max": 100}),
resolution=INPUT.RESOLUTION(),
mask_type=INPUT.COMBO(["based_on_depth", "tight_bboxes", "original"]),
mask_expand=INPUT.INT(default=5, min=-MAX_RESOLUTION, max=MAX_RESOLUTION),
rand_seed=INPUT.INT(default=88, min=0, max=0xffffffffffffffff),
detect_thr=INPUT.FLOAT(default=0.6, min=0.1),
presence_thr=INPUT.FLOAT(default=0.6, min=0.1)
)
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("IMAGE", "INPAINTING_MASK")
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, mask_bbox_padding=30, mask_type="based_on_depth", mask_expand=5, resolution=512, rand_seed=88, detect_thr=0.6, presence_thr=0.6, **kwargs):
install_deps()
from custom_controlnet_aux.mesh_graphormer import MeshGraphormerDetector
model = kwargs["model"] if "model" in kwargs \
else MeshGraphormerDetector.from_pretrained(detect_thr=detect_thr, presence_thr=presence_thr).to(model_management.get_torch_device())
depth_map_list = []
mask_list = []
for single_image in image:
np_image = np.asarray(single_image.cpu() * 255., dtype=np.uint8)
depth_map, mask, info = model(np_image, output_type="np", detect_resolution=resolution, mask_bbox_padding=mask_bbox_padding, seed=rand_seed)
if mask_type == "based_on_depth":
H, W = mask.shape[:2]
mask = cv2.resize(depth_map.copy(), (W, H))
mask[mask > 0] = 255
elif mask_type == "tight_bboxes":
mask = np.zeros_like(mask)
hand_bboxes = (info or {}).get("abs_boxes") or []
for hand_bbox in hand_bboxes:
x_min, x_max, y_min, y_max = hand_bbox
mask[y_min:y_max+1, x_min:x_max+1, :] = 255 #HWC
mask = mask[:, :, :1]
depth_map_list.append(torch.from_numpy(depth_map.astype(np.float32) / 255.0))
mask_list.append(torch.from_numpy(mask.astype(np.float32) / 255.0))
depth_maps, masks = torch.stack(depth_map_list, dim=0), rearrange(torch.stack(mask_list, dim=0), "n h w 1 -> n 1 h w")
return depth_maps, expand_mask(masks, mask_expand, tapered_corners=True)
def normalize_size_base_64(w, h):
short_side = min(w, h)
remainder = short_side % 64
return short_side - remainder + (64 if remainder > 0 else 0)
class Mesh_Graphormer_With_ImpactDetector_Depth_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
types = define_preprocessor_inputs(
# Impact pack
bbox_threshold=INPUT.FLOAT(default=0.5, min=0.1),
bbox_dilation=INPUT.INT(default=10, min=-512, max=512),
bbox_crop_factor=INPUT.FLOAT(default=3.0, min=1.0, max=10.0),
drop_size=INPUT.INT(default=10, min=1, max=MAX_RESOLUTION),
# Mesh Graphormer
mask_bbox_padding=INPUT.INT(default=30, min=0, max=100),
mask_type=INPUT.COMBO(["based_on_depth", "tight_bboxes", "original"]),
mask_expand=INPUT.INT(default=5, min=-MAX_RESOLUTION, max=MAX_RESOLUTION),
rand_seed=INPUT.INT(default=88, min=0, max=0xffffffffffffffff),
resolution=INPUT.RESOLUTION()
)
types["required"]["bbox_detector"] = ("BBOX_DETECTOR", )
return types
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("IMAGE", "INPAINTING_MASK")
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, bbox_detector, bbox_threshold=0.5, bbox_dilation=10, bbox_crop_factor=3.0, drop_size=10, resolution=512, **mesh_graphormer_kwargs):
install_deps()
from custom_controlnet_aux.mesh_graphormer import MeshGraphormerDetector
mesh_graphormer_node = Mesh_Graphormer_Depth_Map_Preprocessor()
model = MeshGraphormerDetector.from_pretrained(detect_thr=0.6, presence_thr=0.6).to(model_management.get_torch_device())
mesh_graphormer_kwargs["model"] = model
frames = image
depth_maps, masks = [], []
for idx in range(len(frames)):
frame = frames[idx:idx+1,...] #Impact Pack's BBOX_DETECTOR only supports single batch image
bbox_detector.setAux('face') # make default prompt as 'face' if empty prompt for CLIPSeg
_, segs = bbox_detector.detect(frame, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size)
bbox_detector.setAux(None)
n, h, w, _ = frame.shape
depth_map, mask = torch.zeros_like(frame), torch.zeros(n, 1, h, w)
for i, seg in enumerate(segs):
x1, y1, x2, y2 = seg.crop_region
cropped_image = frame[:, y1:y2, x1:x2, :] # Never use seg.cropped_image to handle overlapping area
mesh_graphormer_kwargs["resolution"] = 0 #Disable resizing
sub_depth_map, sub_mask = mesh_graphormer_node.execute(cropped_image, **mesh_graphormer_kwargs)
depth_map[:, y1:y2, x1:x2, :] = sub_depth_map
mask[:, :, y1:y2, x1:x2] = sub_mask
depth_maps.append(depth_map)
masks.append(mask)
return (torch.cat(depth_maps), torch.cat(masks))
NODE_CLASS_MAPPINGS = {
"MeshGraphormer-DepthMapPreprocessor": Mesh_Graphormer_Depth_Map_Preprocessor,
"MeshGraphormer+ImpactDetector-DepthMapPreprocessor": Mesh_Graphormer_With_ImpactDetector_Depth_Map_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"MeshGraphormer-DepthMapPreprocessor": "MeshGraphormer Hand Refiner",
"MeshGraphormer+ImpactDetector-DepthMapPreprocessor": "MeshGraphormer Hand Refiner With External Detector"
}