Spaces:
Running
Running
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT | |
import comfy.model_management as model_management | |
class OneFormer_COCO_SemSegPreprocessor: | |
def INPUT_TYPES(s): | |
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "semantic_segmentate" | |
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" | |
def semantic_segmentate(self, image, resolution=512): | |
from custom_controlnet_aux.oneformer import OneformerSegmentor | |
model = OneformerSegmentor.from_pretrained(filename="150_16_swin_l_oneformer_coco_100ep.pth") | |
model = model.to(model_management.get_torch_device()) | |
out = common_annotator_call(model, image, resolution=resolution) | |
del model | |
return (out,) | |
class OneFormer_ADE20K_SemSegPreprocessor: | |
def INPUT_TYPES(s): | |
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "semantic_segmentate" | |
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" | |
def semantic_segmentate(self, image, resolution=512): | |
from custom_controlnet_aux.oneformer import OneformerSegmentor | |
model = OneformerSegmentor.from_pretrained(filename="250_16_swin_l_oneformer_ade20k_160k.pth") | |
model = model.to(model_management.get_torch_device()) | |
out = common_annotator_call(model, image, resolution=resolution) | |
del model | |
return (out,) | |
NODE_CLASS_MAPPINGS = { | |
"OneFormer-COCO-SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor, | |
"OneFormer-ADE20K-SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"OneFormer-COCO-SemSegPreprocessor": "OneFormer COCO Segmentor", | |
"OneFormer-ADE20K-SemSegPreprocessor": "OneFormer ADE20K Segmentor" | |
} |