gartajackhats1985's picture
Upload 1830 files
07f408f verified
raw
history blame
15.5 kB
from torch import Tensor
import torch
from .utils import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion
from .logger import logger
WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
class DefaultWeights:
@classmethod
def INPUT_TYPES(s):
return {
"optional": {
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self, cn_extras: dict[str]={}):
weights = ControlWeights.default(extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class ScaledSoftMaskedUniversalWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK", ),
"min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
"max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
#"lock_min": ("BOOLEAN", {"default": False}, ),
#"lock_max": ("BOOLEAN", {"default": False}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
# normalize mask
mask = mask.clone()
x_min = 0.0 if lock_min else mask.min()
x_max = 1.0 if lock_max else mask.max()
if x_min == x_max:
mask = torch.ones_like(mask) * max_base_multiplier
else:
mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier)
weights = ControlWeights.universal_mask(weight_mask=mask, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class ScaledSoftUniversalWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self, base_multiplier, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftControlNetWeightsSD15:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"output_0": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_1": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_2": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_3": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_4": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_5": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_6": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_7": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_8": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_9": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/ControlNet"
def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
output_7, output_8, output_9, output_10, output_11, middle_0,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
return CustomControlNetWeightsSD15.load_weights(self,
output_0=output_0, output_1=output_1, output_2=output_2, output_3=output_3,
output_4=output_4, output_5=output_5, output_6=output_6, output_7=output_7,
output_8=output_8, output_9=output_9, output_10=output_10, output_11=output_11,
middle_0=middle_0,
uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
class CustomControlNetWeightsSD15:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"output_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"output_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/ControlNet"
def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
output_7, output_8, output_9, output_10, output_11, middle_0,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights_output = [output_0, output_1, output_2, output_3, output_4, output_5, output_6,
output_7, output_8, output_9, output_10, output_11]
weights_middle = [middle_0]
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class CustomControlNetWeightsFlux:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_13": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_14": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_15": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_16": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_17": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_18": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/ControlNet"
def load_weights(self, input_0, input_1, input_2, input_3, input_4, input_5, input_6,
input_7, input_8, input_9, input_10, input_11, input_12, input_13,
input_14, input_15, input_16, input_17, input_18,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights_input = [input_0, input_1, input_2, input_3, input_4, input_5,
input_6, input_7, input_8, input_9, input_10, input_11,
input_12, input_13, input_14, input_15, input_16, input_17, input_18]
weights = ControlWeights.controlnet(weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftT2IAdapterWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_0": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_1": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_2": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/T2IAdapter"
def load_weights(self, input_0, input_1, input_2, input_3,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
return CustomT2IAdapterWeights.load_weights(self, input_0=input_0, input_1=input_1, input_2=input_2, input_3=input_3,
uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
class CustomT2IAdapterWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/T2IAdapter"
def load_weights(self, input_0, input_1, input_2, input_3,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights = [input_0, input_1, input_2, input_3]
weights = get_properly_arranged_t2i_weights(weights)
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))