gartajackhats1985's picture
Upload 1830 files
07f408f verified
raw
history blame
89.3 kB
import torch
import os
import math
import folder_paths
import comfy.model_management as model_management
from node_helpers import conditioning_set_values
from comfy.clip_vision import load as load_clip_vision
from comfy.sd import load_lora_for_models
import comfy.utils
import torch.nn as nn
from PIL import Image
try:
import torchvision.transforms.v2 as T
except ImportError:
import torchvision.transforms as T
from .image_proj_models import MLPProjModel, MLPProjModelFaceId, ProjModelFaceIdPlus, Resampler, ImageProjModel
from .CrossAttentionPatch import Attn2Replace, ipadapter_attention
from .utils import (
encode_image_masked,
tensor_to_size,
contrast_adaptive_sharpening,
tensor_to_image,
image_to_tensor,
ipadapter_model_loader,
insightface_loader,
get_clipvision_file,
get_ipadapter_file,
get_lora_file,
)
# set the models directory
if "ipadapter" not in folder_paths.folder_names_and_paths:
current_paths = [os.path.join(folder_paths.models_dir, "ipadapter")]
else:
current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"]
folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions)
WEIGHT_TYPES = ["linear", "ease in", "ease out", 'ease in-out', 'reverse in-out', 'weak input', 'weak output', 'weak middle', 'strong middle', 'style transfer', 'composition', 'strong style transfer', 'style and composition', 'style transfer precise', 'composition precise']
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main IPAdapter Class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapter(nn.Module):
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False, is_faceid=False, is_portrait_unnorm=False, is_kwai_kolors=False, encoder_hid_proj=None, weight_kolors=1.0):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.is_sdxl = is_sdxl
self.is_full = is_full
self.is_plus = is_plus
self.is_portrait_unnorm = is_portrait_unnorm
self.is_kwai_kolors = is_kwai_kolors
if is_faceid and not is_portrait_unnorm:
self.image_proj_model = self.init_proj_faceid()
elif is_full:
self.image_proj_model = self.init_proj_full()
elif is_plus or is_portrait_unnorm:
self.image_proj_model = self.init_proj_plus()
else:
self.image_proj_model = self.init_proj()
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
self.ip_layers = To_KV(ipadapter_model["ip_adapter"], encoder_hid_proj=encoder_hid_proj, weight_kolors=weight_kolors)
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
return image_proj_model
def init_proj_plus(self):
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20 if self.is_sdxl and not self.is_kwai_kolors else 12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
def init_proj_full(self):
image_proj_model = MLPProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim
)
return image_proj_model
def init_proj_faceid(self):
if self.is_plus:
image_proj_model = ProjModelFaceIdPlus(
cross_attention_dim=self.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=self.clip_embeddings_dim,
num_tokens=self.clip_extra_context_tokens,
)
else:
image_proj_model = MLPProjModelFaceId(
cross_attention_dim=self.cross_attention_dim,
id_embeddings_dim=512,
num_tokens=self.clip_extra_context_tokens,
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed, batch_size):
torch_device = model_management.get_torch_device()
intermediate_device = model_management.intermediate_device()
if batch_size == 0:
batch_size = clip_embed.shape[0]
intermediate_device = torch_device
elif batch_size > clip_embed.shape[0]:
batch_size = clip_embed.shape[0]
clip_embed = torch.split(clip_embed, batch_size, dim=0)
clip_embed_zeroed = torch.split(clip_embed_zeroed, batch_size, dim=0)
image_prompt_embeds = []
uncond_image_prompt_embeds = []
for ce, cez in zip(clip_embed, clip_embed_zeroed):
image_prompt_embeds.append(self.image_proj_model(ce.to(torch_device)).to(intermediate_device))
uncond_image_prompt_embeds.append(self.image_proj_model(cez.to(torch_device)).to(intermediate_device))
del clip_embed, clip_embed_zeroed
image_prompt_embeds = torch.cat(image_prompt_embeds, dim=0)
uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds, dim=0)
torch.cuda.empty_cache()
#image_prompt_embeds = self.image_proj_model(clip_embed)
#uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
@torch.inference_mode()
def get_image_embeds_faceid_plus(self, face_embed, clip_embed, s_scale, shortcut, batch_size):
torch_device = model_management.get_torch_device()
intermediate_device = model_management.intermediate_device()
if batch_size == 0:
batch_size = clip_embed.shape[0]
intermediate_device = torch_device
elif batch_size > clip_embed.shape[0]:
batch_size = clip_embed.shape[0]
face_embed_batch = torch.split(face_embed, batch_size, dim=0)
clip_embed_batch = torch.split(clip_embed, batch_size, dim=0)
embeds = []
for face_embed, clip_embed in zip(face_embed_batch, clip_embed_batch):
embeds.append(self.image_proj_model(face_embed.to(torch_device), clip_embed.to(torch_device), scale=s_scale, shortcut=shortcut).to(intermediate_device))
embeds = torch.cat(embeds, dim=0)
del face_embed_batch, clip_embed_batch
torch.cuda.empty_cache()
#embeds = self.image_proj_model(face_embed, clip_embed, scale=s_scale, shortcut=shortcut)
return embeds
class To_KV(nn.Module):
def __init__(self, state_dict, encoder_hid_proj=None, weight_kolors=1.0):
super().__init__()
if encoder_hid_proj is not None:
hid_proj = nn.Linear(encoder_hid_proj["weight"].shape[1], encoder_hid_proj["weight"].shape[0], bias=True)
hid_proj.weight.data = encoder_hid_proj["weight"] * weight_kolors
hid_proj.bias.data = encoder_hid_proj["bias"] * weight_kolors
self.to_kvs = nn.ModuleDict()
for key, value in state_dict.items():
if encoder_hid_proj is not None:
linear_proj = nn.Linear(value.shape[1], value.shape[0], bias=False)
linear_proj.weight.data = value
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Sequential(hid_proj, linear_proj)
else:
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"].copy()
if "patches_replace" not in to:
to["patches_replace"] = {}
else:
to["patches_replace"] = to["patches_replace"].copy()
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
else:
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy()
if key not in to["patches_replace"]["attn2"]:
to["patches_replace"]["attn2"][key] = Attn2Replace(ipadapter_attention, **patch_kwargs)
model.model_options["transformer_options"] = to
else:
to["patches_replace"]["attn2"][key].add(ipadapter_attention, **patch_kwargs)
def ipadapter_execute(model,
ipadapter,
clipvision,
insightface=None,
image=None,
image_composition=None,
image_negative=None,
weight=1.0,
weight_composition=1.0,
weight_faceidv2=None,
weight_kolors=1.0,
weight_type="linear",
combine_embeds="concat",
start_at=0.0,
end_at=1.0,
attn_mask=None,
pos_embed=None,
neg_embed=None,
unfold_batch=False,
embeds_scaling='V only',
layer_weights=None,
encode_batch_size=0,
style_boost=None,
composition_boost=None,
enhance_tiles=1,
enhance_ratio=1.0,):
device = model_management.get_torch_device()
dtype = model_management.unet_dtype()
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
dtype = torch.float16 if model_management.should_use_fp16() else torch.float32
is_full = "proj.3.weight" in ipadapter["image_proj"]
is_portrait_unnorm = "portraitunnorm" in ipadapter
is_plus = (is_full or "latents" in ipadapter["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter["image_proj"]) and not is_portrait_unnorm
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
is_sdxl = output_cross_attention_dim == 2048
is_kwai_kolors_faceid = "perceiver_resampler.layers.0.0.to_out.weight" in ipadapter["image_proj"] and ipadapter["image_proj"]["perceiver_resampler.layers.0.0.to_out.weight"].shape[0] == 4096
is_faceidv2 = "faceidplusv2" in ipadapter or is_kwai_kolors_faceid
is_kwai_kolors = (is_sdxl and "layers.0.0.to_out.weight" in ipadapter["image_proj"] and ipadapter["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048) or is_kwai_kolors_faceid
is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] and not is_kwai_kolors_faceid
is_faceid = is_portrait or "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] or is_portrait_unnorm or is_kwai_kolors_faceid
if is_faceid and not insightface:
raise Exception("insightface model is required for FaceID models")
if is_faceidv2:
weight_faceidv2 = weight_faceidv2 if weight_faceidv2 is not None else weight*2
if is_kwai_kolors_faceid:
cross_attention_dim = 4096
elif is_kwai_kolors:
cross_attention_dim = 2048
elif (is_plus and is_sdxl and not is_faceid) or is_portrait_unnorm:
cross_attention_dim = 1280
else:
cross_attention_dim = output_cross_attention_dim
if is_kwai_kolors_faceid:
clip_extra_context_tokens = 6
elif (is_plus and not is_faceid) or is_portrait or is_portrait_unnorm:
clip_extra_context_tokens = 16
else:
clip_extra_context_tokens = 4
if image is not None and image.shape[1] != image.shape[2]:
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m")
if isinstance(weight, list):
weight = torch.tensor(weight).unsqueeze(-1).unsqueeze(-1).to(device, dtype=dtype) if unfold_batch else weight[0]
if style_boost is not None:
weight_type = "style transfer precise"
elif composition_boost is not None:
weight_type = "composition precise"
# special weight types
if layer_weights is not None and layer_weights != '':
weight = { int(k): float(v)*weight for k, v in [x.split(":") for x in layer_weights.split(",")] }
weight_type = weight_type if weight_type == "style transfer precise" or weight_type == "composition precise" else "linear"
elif weight_type == "style transfer":
weight = { 6:weight } if is_sdxl else { 0:weight, 1:weight, 2:weight, 3:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "composition":
weight = { 3:weight } if is_sdxl else { 4:weight*0.25, 5:weight }
elif weight_type == "strong style transfer":
if is_sdxl:
weight = { 0:weight, 1:weight, 2:weight, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "style and composition":
if is_sdxl:
weight = { 3:weight_composition, 6:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "strong style and composition":
if is_sdxl:
weight = { 0:weight, 1:weight, 2:weight, 3:weight_composition, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition, 5:weight_composition, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "style transfer precise":
weight_composition = style_boost if style_boost is not None else weight
if is_sdxl:
weight = { 3:weight_composition, 6:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "composition precise":
weight_composition = weight
weight = composition_boost if composition_boost is not None else weight
if is_sdxl:
weight = { 0:weight*.1, 1:weight*.1, 2:weight*.1, 3:weight_composition, 4:weight*.1, 5:weight*.1, 6:weight, 7:weight*.1, 8:weight*.1, 9:weight*.1, 10:weight*.1 }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 6:weight*.1, 7:weight*.1, 8:weight*.1, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
clipvision_size = 224 if not is_kwai_kolors else 336
img_comp_cond_embeds = None
face_cond_embeds = None
if is_faceid:
if insightface is None:
raise Exception("Insightface model is required for FaceID models")
from insightface.utils import face_align
insightface.det_model.input_size = (640,640) # reset the detection size
image_iface = tensor_to_image(image)
face_cond_embeds = []
image = []
for i in range(image_iface.shape[0]):
for size in [(size, size) for size in range(640, 256, -64)]:
insightface.det_model.input_size = size # TODO: hacky but seems to be working
face = insightface.get(image_iface[i])
if face:
if not is_portrait_unnorm:
face_cond_embeds.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0))
else:
face_cond_embeds.append(torch.from_numpy(face[0].embedding).unsqueeze(0))
image.append(image_to_tensor(face_align.norm_crop(image_iface[i], landmark=face[0].kps, image_size=336 if is_kwai_kolors_faceid else 256 if is_sdxl else 224)))
if 640 not in size:
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m")
break
else:
raise Exception('InsightFace: No face detected.')
face_cond_embeds = torch.stack(face_cond_embeds).to(device, dtype=dtype)
image = torch.stack(image)
del image_iface, face
if image is not None:
img_cond_embeds = encode_image_masked(clipvision, image, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size)
if image_composition is not None:
img_comp_cond_embeds = encode_image_masked(clipvision, image_composition, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size)
if is_plus:
img_cond_embeds = img_cond_embeds.penultimate_hidden_states
image_negative = image_negative if image_negative is not None else torch.zeros([1, clipvision_size, clipvision_size, 3])
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).penultimate_hidden_states
if image_composition is not None:
img_comp_cond_embeds = img_comp_cond_embeds.penultimate_hidden_states
else:
img_cond_embeds = img_cond_embeds.image_embeds if not is_faceid else face_cond_embeds
if image_negative is not None and not is_faceid:
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).image_embeds
else:
img_uncond_embeds = torch.zeros_like(img_cond_embeds)
if image_composition is not None:
img_comp_cond_embeds = img_comp_cond_embeds.image_embeds
del image_negative, image_composition
image = None if not is_faceid else image # if it's face_id we need the cropped face for later
elif pos_embed is not None:
img_cond_embeds = pos_embed
if neg_embed is not None:
img_uncond_embeds = neg_embed
else:
if is_plus:
img_uncond_embeds = encode_image_masked(clipvision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states
else:
img_uncond_embeds = torch.zeros_like(img_cond_embeds)
del pos_embed, neg_embed
else:
raise Exception("Images or Embeds are required")
# ensure that cond and uncond have the same batch size
img_uncond_embeds = tensor_to_size(img_uncond_embeds, img_cond_embeds.shape[0])
img_cond_embeds = img_cond_embeds.to(device, dtype=dtype)
img_uncond_embeds = img_uncond_embeds.to(device, dtype=dtype)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = img_comp_cond_embeds.to(device, dtype=dtype)
# combine the embeddings if needed
if combine_embeds != "concat" and img_cond_embeds.shape[0] > 1 and not unfold_batch:
if combine_embeds == "add":
img_cond_embeds = torch.sum(img_cond_embeds, dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.sum(face_cond_embeds, dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.sum(img_comp_cond_embeds, dim=0).unsqueeze(0)
elif combine_embeds == "subtract":
img_cond_embeds = img_cond_embeds[0] - torch.mean(img_cond_embeds[1:], dim=0)
img_cond_embeds = img_cond_embeds.unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = face_cond_embeds[0] - torch.mean(face_cond_embeds[1:], dim=0)
face_cond_embeds = face_cond_embeds.unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = img_comp_cond_embeds[0] - torch.mean(img_comp_cond_embeds[1:], dim=0)
img_comp_cond_embeds = img_comp_cond_embeds.unsqueeze(0)
elif combine_embeds == "average":
img_cond_embeds = torch.mean(img_cond_embeds, dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.mean(face_cond_embeds, dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds, dim=0).unsqueeze(0)
elif combine_embeds == "norm average":
img_cond_embeds = torch.mean(img_cond_embeds / torch.norm(img_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.mean(face_cond_embeds / torch.norm(face_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds / torch.norm(img_comp_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
img_uncond_embeds = img_uncond_embeds[0].unsqueeze(0) # TODO: better strategy for uncond could be to average them
if attn_mask is not None:
attn_mask = attn_mask.to(device, dtype=dtype)
encoder_hid_proj = None
if is_kwai_kolors_faceid and hasattr(model.model, "diffusion_model") and hasattr(model.model.diffusion_model, "encoder_hid_proj"):
encoder_hid_proj = model.model.diffusion_model.encoder_hid_proj.state_dict()
ipa = IPAdapter(
ipadapter,
cross_attention_dim=cross_attention_dim,
output_cross_attention_dim=output_cross_attention_dim,
clip_embeddings_dim=img_cond_embeds.shape[-1],
clip_extra_context_tokens=clip_extra_context_tokens,
is_sdxl=is_sdxl,
is_plus=is_plus,
is_full=is_full,
is_faceid=is_faceid,
is_portrait_unnorm=is_portrait_unnorm,
is_kwai_kolors=is_kwai_kolors,
encoder_hid_proj=encoder_hid_proj,
weight_kolors=weight_kolors
).to(device, dtype=dtype)
if is_faceid and is_plus:
cond = ipa.get_image_embeds_faceid_plus(face_cond_embeds, img_cond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size)
# TODO: check if noise helps with the uncond face embeds
uncond = ipa.get_image_embeds_faceid_plus(torch.zeros_like(face_cond_embeds), img_uncond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size)
else:
cond, uncond = ipa.get_image_embeds(img_cond_embeds, img_uncond_embeds, encode_batch_size)
if img_comp_cond_embeds is not None:
cond_comp = ipa.get_image_embeds(img_comp_cond_embeds, img_uncond_embeds, encode_batch_size)[0]
cond = cond.to(device, dtype=dtype)
uncond = uncond.to(device, dtype=dtype)
cond_alt = None
if img_comp_cond_embeds is not None:
cond_alt = { 3: cond_comp.to(device, dtype=dtype) }
del img_cond_embeds, img_uncond_embeds, img_comp_cond_embeds, face_cond_embeds
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
patch_kwargs = {
"ipadapter": ipa,
"weight": weight,
"cond": cond,
"cond_alt": cond_alt,
"uncond": uncond,
"weight_type": weight_type,
"mask": attn_mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
"unfold_batch": unfold_batch,
"embeds_scaling": embeds_scaling,
}
number = 0
if not is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("input", id))
number += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("output", id))
number += 1
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("middle", 1))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("input", id, index))
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("output", id, index))
number += 1
for index in range(10):
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("middle", 1, index))
number += 1
return (model, image)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Loaders
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapterUnifiedLoader:
def __init__(self):
self.lora = None
self.clipvision = { "file": None, "model": None }
self.ipadapter = { "file": None, "model": None }
self.insightface = { "provider": None, "model": None }
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['LIGHT - SD1.5 only (low strength)', 'STANDARD (medium strength)', 'VIT-G (medium strength)', 'PLUS (high strength)', 'PLUS FACE (portraits)', 'FULL FACE - SD1.5 only (portraits stronger)'], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
RETURN_TYPES = ("MODEL", "IPADAPTER", )
RETURN_NAMES = ("model", "ipadapter", )
FUNCTION = "load_models"
CATEGORY = "ipadapter"
def load_models(self, model, preset, lora_strength=0.0, provider="CPU", ipadapter=None):
pipeline = { "clipvision": { 'file': None, 'model': None }, "ipadapter": { 'file': None, 'model': None }, "insightface": { 'provider': None, 'model': None } }
if ipadapter is not None:
pipeline = ipadapter
# 1. Load the clipvision model
clipvision_file = get_clipvision_file(preset)
if clipvision_file is None:
raise Exception("ClipVision model not found.")
if clipvision_file != self.clipvision['file']:
if clipvision_file != pipeline['clipvision']['file']:
self.clipvision['file'] = clipvision_file
self.clipvision['model'] = load_clip_vision(clipvision_file)
print(f"\033[33mINFO: Clip Vision model loaded from {clipvision_file}\033[0m")
else:
self.clipvision = pipeline['clipvision']
# 2. Load the ipadapter model
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix))
ipadapter_file, is_insightface, lora_pattern = get_ipadapter_file(preset, is_sdxl)
if ipadapter_file is None:
raise Exception("IPAdapter model not found.")
if ipadapter_file != self.ipadapter['file']:
if pipeline['ipadapter']['file'] != ipadapter_file:
self.ipadapter['file'] = ipadapter_file
self.ipadapter['model'] = ipadapter_model_loader(ipadapter_file)
print(f"\033[33mINFO: IPAdapter model loaded from {ipadapter_file}\033[0m")
else:
self.ipadapter = pipeline['ipadapter']
# 3. Load the lora model if needed
if lora_pattern is not None:
lora_file = get_lora_file(lora_pattern)
lora_model = None
if lora_file is None:
raise Exception("LoRA model not found.")
if self.lora is not None:
if lora_file == self.lora['file']:
lora_model = self.lora['model']
else:
self.lora = None
torch.cuda.empty_cache()
if lora_model is None:
lora_model = comfy.utils.load_torch_file(lora_file, safe_load=True)
self.lora = { 'file': lora_file, 'model': lora_model }
print(f"\033[33mINFO: LoRA model loaded from {lora_file}\033[0m")
if lora_strength > 0:
model, _ = load_lora_for_models(model, None, lora_model, lora_strength, 0)
# 4. Load the insightface model if needed
if is_insightface:
if provider != self.insightface['provider']:
if pipeline['insightface']['provider'] != provider:
self.insightface['provider'] = provider
self.insightface['model'] = insightface_loader(provider)
print(f"\033[33mINFO: InsightFace model loaded with {provider} provider\033[0m")
else:
self.insightface = pipeline['insightface']
return (model, { 'clipvision': self.clipvision, 'ipadapter': self.ipadapter, 'insightface': self.insightface }, )
class IPAdapterUnifiedLoaderFaceID(IPAdapterUnifiedLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['FACEID', 'FACEID PLUS - SD1.5 only', 'FACEID PLUS V2', 'FACEID PORTRAIT (style transfer)', 'FACEID PORTRAIT UNNORM - SDXL only (strong)'], ),
"lora_strength": ("FLOAT", { "default": 0.6, "min": 0, "max": 1, "step": 0.01 }),
"provider": (["CPU", "CUDA", "ROCM", "DirectML", "OpenVINO", "CoreML"], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
RETURN_NAMES = ("MODEL", "ipadapter", )
CATEGORY = "ipadapter/faceid"
class IPAdapterUnifiedLoaderCommunity(IPAdapterUnifiedLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['Composition', 'Kolors'], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
CATEGORY = "ipadapter/loaders"
class IPAdapterModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}}
RETURN_TYPES = ("IPADAPTER",)
FUNCTION = "load_ipadapter_model"
CATEGORY = "ipadapter/loaders"
def load_ipadapter_model(self, ipadapter_file):
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file)
return (ipadapter_model_loader(ipadapter_file),)
class IPAdapterInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
"model_name": (['buffalo_l', 'antelopev2'], )
},
}
RETURN_TYPES = ("INSIGHTFACE",)
FUNCTION = "load_insightface"
CATEGORY = "ipadapter/loaders"
def load_insightface(self, provider, model_name):
return (insightface_loader(provider, model_name=model_name),)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main Apply Nodes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapterSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"weight_type": (['standard', 'prompt is more important', 'style transfer'], ),
},
"optional": {
"attn_mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, model, ipadapter, image, weight, start_at, end_at, weight_type, attn_mask=None):
if weight_type.startswith("style"):
weight_type = "style transfer"
elif weight_type == "prompt is more important":
weight_type = "ease out"
else:
weight_type = "linear"
ipa_args = {
"image": image,
"weight": weight,
"start_at": start_at,
"end_at": end_at,
"attn_mask": attn_mask,
"weight_type": weight_type,
"insightface": ipadapter['insightface']['model'] if 'insightface' in ipadapter else None,
}
if 'ipadapter' not in ipadapter:
raise Exception("IPAdapter model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.")
if 'clipvision' not in ipadapter:
raise Exception("CLIPVision model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.")
return ipadapter_execute(model.clone(), ipadapter['ipadapter']['model'], ipadapter['clipvision']['model'], **ipa_args)
class IPAdapterAdvanced:
def __init__(self):
self.unfold_batch = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, model, ipadapter, start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, expand_style=False, weight_type="linear", combine_embeds="concat", weight_faceidv2=None, image=None, image_style=None, image_composition=None, image_negative=None, clip_vision=None, attn_mask=None, insightface=None, embeds_scaling='V only', layer_weights=None, ipadapter_params=None, encode_batch_size=0, style_boost=None, composition_boost=None, enhance_tiles=1, enhance_ratio=1.0, weight_kolors=1.0):
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix))
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
if clip_vision is None:
raise Exception("Missing CLIPVision model.")
if image_style is not None: # we are doing style + composition transfer
if not is_sdxl:
raise Exception("Style + Composition transfer is only available for SDXL models at the moment.") # TODO: check feasibility for SD1.5 models
image = image_style
weight = weight_style
if image_composition is None:
image_composition = image_style
weight_type = "strong style and composition" if expand_style else "style and composition"
if ipadapter_params is not None: # we are doing batch processing
image = ipadapter_params['image']
attn_mask = ipadapter_params['attn_mask']
weight = ipadapter_params['weight']
weight_type = ipadapter_params['weight_type']
start_at = ipadapter_params['start_at']
end_at = ipadapter_params['end_at']
else:
# at this point weight can be a list from the batch-weight or a single float
weight = [weight]
image = image if isinstance(image, list) else [image]
work_model = model.clone()
for i in range(len(image)):
if image[i] is None:
continue
ipa_args = {
"image": image[i],
"image_composition": image_composition,
"image_negative": image_negative,
"weight": weight[i],
"weight_composition": weight_composition,
"weight_faceidv2": weight_faceidv2,
"weight_type": weight_type if not isinstance(weight_type, list) else weight_type[i],
"combine_embeds": combine_embeds,
"start_at": start_at if not isinstance(start_at, list) else start_at[i],
"end_at": end_at if not isinstance(end_at, list) else end_at[i],
"attn_mask": attn_mask if not isinstance(attn_mask, list) else attn_mask[i],
"unfold_batch": self.unfold_batch,
"embeds_scaling": embeds_scaling,
"insightface": insightface if insightface is not None else ipadapter['insightface']['model'] if 'insightface' in ipadapter else None,
"layer_weights": layer_weights,
"encode_batch_size": encode_batch_size,
"style_boost": style_boost,
"composition_boost": composition_boost,
"enhance_tiles": enhance_tiles,
"enhance_ratio": enhance_ratio,
"weight_kolors": weight_kolors,
}
work_model, face_image = ipadapter_execute(work_model, ipadapter_model, clip_vision, **ipa_args)
del ipadapter
return (work_model, face_image, )
class IPAdapterBatch(IPAdapterAdvanced):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterStyleComposition(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image_style": ("IMAGE",),
"image_composition": ("IMAGE",),
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"expand_style": ("BOOLEAN", { "default": False }),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"], {"default": "average"}),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
CATEGORY = "ipadapter/style_composition"
class IPAdapterStyleCompositionBatch(IPAdapterStyleComposition):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image_style": ("IMAGE",),
"image_composition": ("IMAGE",),
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"expand_style": ("BOOLEAN", { "default": False }),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterFaceID(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/faceid"
RETURN_TYPES = ("MODEL","IMAGE",)
RETURN_NAMES = ("MODEL", "face_image", )
class IPAAdapterFaceIDBatch(IPAdapterFaceID):
def __init__(self):
self.unfold_batch = True
class IPAdapterFaceIDKolors(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_kolors": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/faceid"
RETURN_TYPES = ("MODEL","IMAGE",)
RETURN_NAMES = ("MODEL", "face_image", )
class IPAdapterTiled:
def __init__(self):
self.unfold_batch = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("MODEL", "IMAGE", "MASK", )
RETURN_NAMES = ("MODEL", "tiles", "masks", )
FUNCTION = "apply_tiled"
CATEGORY = "ipadapter/tiled"
def apply_tiled(self, model, ipadapter, image, weight, weight_type, start_at, end_at, sharpening, combine_embeds="concat", image_negative=None, attn_mask=None, clip_vision=None, embeds_scaling='V only', encode_batch_size=0):
# 1. Select the models
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
clip_vision = clip_vision
if clip_vision is None:
raise Exception("Missing CLIPVision model.")
del ipadapter
# 2. Extract the tiles
tile_size = 256 # I'm using 256 instead of 224 as it is more likely divisible by the latent size, it will be downscaled to 224 by the clip vision encoder
_, oh, ow, _ = image.shape
if attn_mask is None:
attn_mask = torch.ones([1, oh, ow], dtype=image.dtype, device=image.device)
image = image.permute([0,3,1,2])
attn_mask = attn_mask.unsqueeze(1)
# the mask should have the same proportions as the reference image and the latent
attn_mask = T.Resize((oh, ow), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)
# if the image is almost a square, we crop it to a square
if oh / ow > 0.75 and oh / ow < 1.33:
# crop the image to a square
image = T.CenterCrop(min(oh, ow))(image)
resize = (tile_size*2, tile_size*2)
attn_mask = T.CenterCrop(min(oh, ow))(attn_mask)
# otherwise resize the smallest side and the other proportionally
else:
resize = (int(tile_size * ow / oh), tile_size) if oh < ow else (tile_size, int(tile_size * oh / ow))
# using PIL for better results
imgs = []
for img in image:
img = T.ToPILImage()(img)
img = img.resize(resize, resample=Image.Resampling['LANCZOS'])
imgs.append(T.ToTensor()(img))
image = torch.stack(imgs)
del imgs, img
# we don't need a high quality resize for the mask
attn_mask = T.Resize(resize[::-1], interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)
# we allow a maximum of 4 tiles
if oh / ow > 4 or oh / ow < 0.25:
crop = (tile_size, tile_size*4) if oh < ow else (tile_size*4, tile_size)
image = T.CenterCrop(crop)(image)
attn_mask = T.CenterCrop(crop)(attn_mask)
attn_mask = attn_mask.squeeze(1)
if sharpening > 0:
image = contrast_adaptive_sharpening(image, sharpening)
image = image.permute([0,2,3,1])
_, oh, ow, _ = image.shape
# find the number of tiles for each side
tiles_x = math.ceil(ow / tile_size)
tiles_y = math.ceil(oh / tile_size)
overlap_x = max(0, (tiles_x * tile_size - ow) / (tiles_x - 1 if tiles_x > 1 else 1))
overlap_y = max(0, (tiles_y * tile_size - oh) / (tiles_y - 1 if tiles_y > 1 else 1))
base_mask = torch.zeros([attn_mask.shape[0], oh, ow], dtype=image.dtype, device=image.device)
# extract all the tiles from the image and create the masks
tiles = []
masks = []
for y in range(tiles_y):
for x in range(tiles_x):
start_x = int(x * (tile_size - overlap_x))
start_y = int(y * (tile_size - overlap_y))
tiles.append(image[:, start_y:start_y+tile_size, start_x:start_x+tile_size, :])
mask = base_mask.clone()
mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] = attn_mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size]
masks.append(mask)
del mask
# 3. Apply the ipadapter to each group of tiles
model = model.clone()
for i in range(len(tiles)):
ipa_args = {
"image": tiles[i],
"image_negative": image_negative,
"weight": weight,
"weight_type": weight_type,
"combine_embeds": combine_embeds,
"start_at": start_at,
"end_at": end_at,
"attn_mask": masks[i],
"unfold_batch": self.unfold_batch,
"embeds_scaling": embeds_scaling,
"encode_batch_size": encode_batch_size,
}
# apply the ipadapter to the model without cloning it
model, _ = ipadapter_execute(model, ipadapter_model, clip_vision, **ipa_args)
return (model, torch.cat(tiles), torch.cat(masks), )
class IPAdapterTiledBatch(IPAdapterTiled):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterEmbeds:
def __init__(self):
self.unfold_batch = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"pos_embed": ("EMBEDS",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"neg_embed": ("EMBEDS",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter/embeds"
def apply_ipadapter(self, model, ipadapter, pos_embed, weight, weight_type, start_at, end_at, neg_embed=None, attn_mask=None, clip_vision=None, embeds_scaling='V only'):
ipa_args = {
"pos_embed": pos_embed,
"neg_embed": neg_embed,
"weight": weight,
"weight_type": weight_type,
"start_at": start_at,
"end_at": end_at,
"attn_mask": attn_mask,
"embeds_scaling": embeds_scaling,
"unfold_batch": self.unfold_batch,
}
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
clip_vision = clip_vision
if clip_vision is None and neg_embed is None:
raise Exception("Missing CLIPVision model.")
del ipadapter
return ipadapter_execute(model.clone(), ipadapter_model, clip_vision, **ipa_args)
class IPAdapterEmbedsBatch(IPAdapterEmbeds):
def __init__(self):
self.unfold_batch = True
class IPAdapterMS(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"layer_weights": ("STRING", { "default": "", "multiline": True }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/dev"
class IPAdapterClipVisionEnhancer(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }),
"enhance_ratio": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
CATEGORY = "ipadapter/dev"
class IPAdapterClipVisionEnhancerBatch(IPAdapterClipVisionEnhancer):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }),
"enhance_ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.05 }),
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterFromParams(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"ipadapter_params": ("IPADAPTER_PARAMS", ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"clip_vision": ("CLIP_VISION",),
}
}
CATEGORY = "ipadapter/params"
class IPAdapterPreciseStyleTransfer(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"style_boost": ("FLOAT", { "default": 1.0, "min": -5, "max": 5, "step": 0.05 }),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterPreciseStyleTransferBatch(IPAdapterPreciseStyleTransfer):
def __init__(self):
self.unfold_batch = True
class IPAdapterPreciseComposition(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"composition_boost": ("FLOAT", { "default": 0.0, "min": -5, "max": 5, "step": 0.05 }),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterPreciseCompositionBatch(IPAdapterPreciseComposition):
def __init__(self):
self.unfold_batch = True
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Helpers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapterEncoder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ipadapter": ("IPADAPTER",),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01 }),
},
"optional": {
"mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("EMBEDS", "EMBEDS",)
RETURN_NAMES = ("pos_embed", "neg_embed",)
FUNCTION = "encode"
CATEGORY = "ipadapter/embeds"
def encode(self, ipadapter, image, weight, mask=None, clip_vision=None):
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
clip_vision = clip_vision
if clip_vision is None:
raise Exception("Missing CLIPVision model.")
is_plus = "proj.3.weight" in ipadapter_model["image_proj"] or "latents" in ipadapter_model["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter_model["image_proj"]
is_kwai_kolors = is_plus and "layers.0.0.to_out.weight" in ipadapter_model["image_proj"] and ipadapter_model["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048
clipvision_size = 224 if not is_kwai_kolors else 336
# resize and crop the mask to 224x224
if mask is not None and mask.shape[1:3] != torch.Size([clipvision_size, clipvision_size]):
mask = mask.unsqueeze(1)
transforms = T.Compose([
T.CenterCrop(min(mask.shape[2], mask.shape[3])),
T.Resize((clipvision_size, clipvision_size), interpolation=T.InterpolationMode.BICUBIC, antialias=True),
])
mask = transforms(mask).squeeze(1)
#mask = T.Resize((image.shape[1], image.shape[2]), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(mask.unsqueeze(1)).squeeze(1)
img_cond_embeds = encode_image_masked(clip_vision, image, mask, clipvision_size=clipvision_size)
if is_plus:
img_cond_embeds = img_cond_embeds.penultimate_hidden_states
img_uncond_embeds = encode_image_masked(clip_vision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states
else:
img_cond_embeds = img_cond_embeds.image_embeds
img_uncond_embeds = torch.zeros_like(img_cond_embeds)
if weight != 1:
img_cond_embeds = img_cond_embeds * weight
return (img_cond_embeds, img_uncond_embeds, )
class IPAdapterCombineEmbeds:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"embed1": ("EMBEDS",),
"method": (["concat", "add", "subtract", "average", "norm average", "max", "min"], ),
},
"optional": {
"embed2": ("EMBEDS",),
"embed3": ("EMBEDS",),
"embed4": ("EMBEDS",),
"embed5": ("EMBEDS",),
}}
RETURN_TYPES = ("EMBEDS",)
FUNCTION = "batch"
CATEGORY = "ipadapter/embeds"
def batch(self, embed1, method, embed2=None, embed3=None, embed4=None, embed5=None):
if method=='concat' and embed2 is None and embed3 is None and embed4 is None and embed5 is None:
return (embed1, )
embeds = [embed1, embed2, embed3, embed4, embed5]
embeds = [embed for embed in embeds if embed is not None]
embeds = torch.cat(embeds, dim=0)
if method == "add":
embeds = torch.sum(embeds, dim=0).unsqueeze(0)
elif method == "subtract":
embeds = embeds[0] - torch.mean(embeds[1:], dim=0)
embeds = embeds.unsqueeze(0)
elif method == "average":
embeds = torch.mean(embeds, dim=0).unsqueeze(0)
elif method == "norm average":
embeds = torch.mean(embeds / torch.norm(embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
elif method == "max":
embeds = torch.max(embeds, dim=0).values.unsqueeze(0)
elif method == "min":
embeds = torch.min(embeds, dim=0).values.unsqueeze(0)
return (embeds, )
class IPAdapterNoise:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"type": (["fade", "dissolve", "gaussian", "shuffle"], ),
"strength": ("FLOAT", { "default": 1.0, "min": 0, "max": 1, "step": 0.05 }),
"blur": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1 }),
},
"optional": {
"image_optional": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "make_noise"
CATEGORY = "ipadapter/utils"
def make_noise(self, type, strength, blur, image_optional=None):
if image_optional is None:
image = torch.zeros([1, 224, 224, 3])
else:
transforms = T.Compose([
T.CenterCrop(min(image_optional.shape[1], image_optional.shape[2])),
T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC, antialias=True),
])
image = transforms(image_optional.permute([0,3,1,2])).permute([0,2,3,1])
seed = int(torch.sum(image).item()) % 1000000007 # hash the image to get a seed, grants predictability
torch.manual_seed(seed)
if type == "fade":
noise = torch.rand_like(image)
noise = image * (1 - strength) + noise * strength
elif type == "dissolve":
mask = (torch.rand_like(image) < strength).float()
noise = torch.rand_like(image)
noise = image * (1-mask) + noise * mask
elif type == "gaussian":
noise = torch.randn_like(image) * strength
noise = image + noise
elif type == "shuffle":
transforms = T.Compose([
T.ElasticTransform(alpha=75.0, sigma=(1-strength)*3.5),
T.RandomVerticalFlip(p=1.0),
T.RandomHorizontalFlip(p=1.0),
])
image = transforms(image.permute([0,3,1,2])).permute([0,2,3,1])
noise = torch.randn_like(image) * (strength*0.75)
noise = image * (1-noise) + noise
del image
noise = torch.clamp(noise, 0, 1)
if blur > 0:
if blur % 2 == 0:
blur += 1
noise = T.functional.gaussian_blur(noise.permute([0,3,1,2]), blur).permute([0,2,3,1])
return (noise, )
class PrepImageForClipVision:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],),
"crop_position": (["top", "bottom", "left", "right", "center", "pad"],),
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prep_image"
CATEGORY = "ipadapter/utils"
def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0):
size = (224, 224)
_, oh, ow, _ = image.shape
output = image.permute([0,3,1,2])
if crop_position == "pad":
if oh != ow:
if oh > ow:
pad = (oh - ow) // 2
pad = (pad, 0, pad, 0)
elif ow > oh:
pad = (ow - oh) // 2
pad = (0, pad, 0, pad)
output = T.functional.pad(output, pad, fill=0)
else:
crop_size = min(oh, ow)
x = (ow-crop_size) // 2
y = (oh-crop_size) // 2
if "top" in crop_position:
y = 0
elif "bottom" in crop_position:
y = oh-crop_size
elif "left" in crop_position:
x = 0
elif "right" in crop_position:
x = ow-crop_size
x2 = x+crop_size
y2 = y+crop_size
output = output[:, :, y:y2, x:x2]
imgs = []
for img in output:
img = T.ToPILImage()(img) # using PIL for better results
img = img.resize(size, resample=Image.Resampling[interpolation])
imgs.append(T.ToTensor()(img))
output = torch.stack(imgs, dim=0)
del imgs, img
if sharpening > 0:
output = contrast_adaptive_sharpening(output, sharpening)
output = output.permute([0,2,3,1])
return (output, )
class IPAdapterSaveEmbeds:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"embeds": ("EMBEDS",),
"filename_prefix": ("STRING", {"default": "IP_embeds"})
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "ipadapter/embeds"
def save(self, embeds, filename_prefix):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
file = f"{filename}_{counter:05}.ipadpt"
file = os.path.join(full_output_folder, file)
torch.save(embeds, file)
return (None, )
class IPAdapterLoadEmbeds:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
return {"required": {"embeds": [sorted(files), ]}, }
RETURN_TYPES = ("EMBEDS", )
FUNCTION = "load"
CATEGORY = "ipadapter/embeds"
def load(self, embeds):
path = folder_paths.get_annotated_filepath(embeds)
return (torch.load(path).cpu(), )
class IPAdapterWeights:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"weights": ("STRING", {"default": '1.0, 0.0', "multiline": True }),
"timing": (["custom", "linear", "ease_in_out", "ease_in", "ease_out", "random"], { "default": "linear" } ),
"frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }),
"start_frame": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }),
"end_frame": ("INT", {"default": 9999, "min": 0, "max": 9999, "step": 1 }),
"add_starting_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }),
"add_ending_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }),
"method": (["full batch", "shift batches", "alternate batches"], { "default": "full batch" }),
}, "optional": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("FLOAT", "FLOAT", "INT", "IMAGE", "IMAGE", "WEIGHTS_STRATEGY")
RETURN_NAMES = ("weights", "weights_invert", "total_frames", "image_1", "image_2", "weights_strategy")
FUNCTION = "weights"
CATEGORY = "ipadapter/weights"
def weights(self, weights='', timing='custom', frames=0, start_frame=0, end_frame=9999, add_starting_frames=0, add_ending_frames=0, method='full batch', weights_strategy=None, image=None):
import random
frame_count = image.shape[0] if image is not None else 0
if weights_strategy is not None:
weights = weights_strategy["weights"]
timing = weights_strategy["timing"]
frames = weights_strategy["frames"]
start_frame = weights_strategy["start_frame"]
end_frame = weights_strategy["end_frame"]
add_starting_frames = weights_strategy["add_starting_frames"]
add_ending_frames = weights_strategy["add_ending_frames"]
method = weights_strategy["method"]
frame_count = weights_strategy["frame_count"]
else:
weights_strategy = {
"weights": weights,
"timing": timing,
"frames": frames,
"start_frame": start_frame,
"end_frame": end_frame,
"add_starting_frames": add_starting_frames,
"add_ending_frames": add_ending_frames,
"method": method,
"frame_count": frame_count,
}
# convert the string to a list of floats separated by commas or newlines
weights = weights.replace("\n", ",")
weights = [float(weight) for weight in weights.split(",") if weight.strip() != ""]
if timing != "custom":
frames = max(frames, 2)
start = 0.0
end = 1.0
if len(weights) > 0:
start = weights[0]
end = weights[-1]
weights = []
end_frame = min(end_frame, frames)
duration = end_frame - start_frame
if start_frame > 0:
weights.extend([start] * start_frame)
for i in range(duration):
n = duration - 1
if timing == "linear":
weights.append(start + (end - start) * i / n)
elif timing == "ease_in_out":
weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi)) / 2)
elif timing == "ease_in":
weights.append(start + (end - start) * math.sin(i / n * math.pi / 2))
elif timing == "ease_out":
weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi / 2)))
elif timing == "random":
weights.append(random.uniform(start, end))
weights[-1] = end if timing != "random" else weights[-1]
if end_frame < frames:
weights.extend([end] * (frames - end_frame))
if len(weights) == 0:
weights = [0.0]
frames = len(weights)
# repeat the images for cross fade
image_1 = None
image_2 = None
# Calculate the min and max of the weights
min_weight = min(weights)
max_weight = max(weights)
if image is not None:
if "shift" in method:
image_1 = image[:-1]
image_2 = image[1:]
weights = weights * image_1.shape[0]
image_1 = image_1.repeat_interleave(frames, 0)
image_2 = image_2.repeat_interleave(frames, 0)
elif "alternate" in method:
image_1 = image[::2].repeat_interleave(2, 0)
image_1 = image_1[1:]
image_2 = image[1::2].repeat_interleave(2, 0)
# Invert the weights relative to their own range
mew_weights = weights + [max_weight - (w - min_weight) for w in weights]
mew_weights = mew_weights * (image_1.shape[0] // 2)
if image.shape[0] % 2:
image_1 = image_1[:-1]
else:
image_2 = image_2[:-1]
mew_weights = mew_weights + weights
weights = mew_weights
image_1 = image_1.repeat_interleave(frames, 0)
image_2 = image_2.repeat_interleave(frames, 0)
else:
weights = weights * image.shape[0]
image_1 = image.repeat_interleave(frames, 0)
# add starting and ending frames
if add_starting_frames > 0:
weights = [weights[0]] * add_starting_frames + weights
image_1 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_1], dim=0)
if image_2 is not None:
image_2 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_2], dim=0)
if add_ending_frames > 0:
weights = weights + [weights[-1]] * add_ending_frames
image_1 = torch.cat([image_1, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0)
if image_2 is not None:
image_2 = torch.cat([image_2, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0)
# reverse the weights array
weights_invert = weights[::-1]
frame_count = len(weights)
return (weights, weights_invert, frame_count, image_1, image_2, weights_strategy,)
class IPAdapterWeightsFromStrategy(IPAdapterWeights):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"weights_strategy": ("WEIGHTS_STRATEGY",),
}, "optional": {
"image": ("IMAGE",),
}
}
class IPAdapterPromptScheduleFromWeightsStrategy():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"weights_strategy": ("WEIGHTS_STRATEGY",),
"prompt": ("STRING", {"default": "", "multiline": True }),
}}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("prompt_schedule", )
FUNCTION = "prompt_schedule"
CATEGORY = "ipadapter/weights"
def prompt_schedule(self, weights_strategy, prompt=""):
frames = weights_strategy["frames"]
add_starting_frames = weights_strategy["add_starting_frames"]
add_ending_frames = weights_strategy["add_ending_frames"]
frame_count = weights_strategy["frame_count"]
out = ""
prompt = [p for p in prompt.split("\n") if p.strip() != ""]
if len(prompt) > 0 and frame_count > 0:
# prompt_pos must be the same size as the image batch
if len(prompt) > frame_count:
prompt = prompt[:frame_count]
elif len(prompt) < frame_count:
prompt += [prompt[-1]] * (frame_count - len(prompt))
if add_starting_frames > 0:
out += f"\"0\": \"{prompt[0]}\",\n"
for i in range(frame_count):
out += f"\"{i * frames + add_starting_frames}\": \"{prompt[i]}\",\n"
if add_ending_frames > 0:
out += f"\"{frame_count * frames + add_starting_frames}\": \"{prompt[-1]}\",\n"
return (out, )
class IPAdapterCombineWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weights_1": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
"weights_2": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
}}
RETURN_TYPES = ("FLOAT", "INT")
RETURN_NAMES = ("weights", "count")
FUNCTION = "combine"
CATEGORY = "ipadapter/utils"
def combine(self, weights_1, weights_2):
if not isinstance(weights_1, list):
weights_1 = [weights_1]
if not isinstance(weights_2, list):
weights_2 = [weights_2]
weights = weights_1 + weights_2
return (weights, len(weights), )
class IPAdapterRegionalConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {
#"set_cond_area": (["default", "mask bounds"],),
"image": ("IMAGE",),
"image_weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.05 }),
"prompt_weight": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 10.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
}, "optional": {
"mask": ("MASK",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
}}
RETURN_TYPES = ("IPADAPTER_PARAMS", "CONDITIONING", "CONDITIONING", )
RETURN_NAMES = ("IPADAPTER_PARAMS", "POSITIVE", "NEGATIVE")
FUNCTION = "conditioning"
CATEGORY = "ipadapter/params"
def conditioning(self, image, image_weight, prompt_weight, weight_type, start_at, end_at, mask=None, positive=None, negative=None):
set_area_to_bounds = False #if set_cond_area == "default" else True
if mask is not None:
if positive is not None:
positive = conditioning_set_values(positive, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight})
if negative is not None:
negative = conditioning_set_values(negative, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight})
ipadapter_params = {
"image": [image],
"attn_mask": [mask],
"weight": [image_weight],
"weight_type": [weight_type],
"start_at": [start_at],
"end_at": [end_at],
}
return (ipadapter_params, positive, negative, )
class IPAdapterCombineParams:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"params_1": ("IPADAPTER_PARAMS",),
"params_2": ("IPADAPTER_PARAMS",),
}, "optional": {
"params_3": ("IPADAPTER_PARAMS",),
"params_4": ("IPADAPTER_PARAMS",),
"params_5": ("IPADAPTER_PARAMS",),
}}
RETURN_TYPES = ("IPADAPTER_PARAMS",)
FUNCTION = "combine"
CATEGORY = "ipadapter/params"
def combine(self, params_1, params_2, params_3=None, params_4=None, params_5=None):
ipadapter_params = {
"image": params_1["image"] + params_2["image"],
"attn_mask": params_1["attn_mask"] + params_2["attn_mask"],
"weight": params_1["weight"] + params_2["weight"],
"weight_type": params_1["weight_type"] + params_2["weight_type"],
"start_at": params_1["start_at"] + params_2["start_at"],
"end_at": params_1["end_at"] + params_2["end_at"],
}
if params_3 is not None:
ipadapter_params["image"] += params_3["image"]
ipadapter_params["attn_mask"] += params_3["attn_mask"]
ipadapter_params["weight"] += params_3["weight"]
ipadapter_params["weight_type"] += params_3["weight_type"]
ipadapter_params["start_at"] += params_3["start_at"]
ipadapter_params["end_at"] += params_3["end_at"]
if params_4 is not None:
ipadapter_params["image"] += params_4["image"]
ipadapter_params["attn_mask"] += params_4["attn_mask"]
ipadapter_params["weight"] += params_4["weight"]
ipadapter_params["weight_type"] += params_4["weight_type"]
ipadapter_params["start_at"] += params_4["start_at"]
ipadapter_params["end_at"] += params_4["end_at"]
if params_5 is not None:
ipadapter_params["image"] += params_5["image"]
ipadapter_params["attn_mask"] += params_5["attn_mask"]
ipadapter_params["weight"] += params_5["weight"]
ipadapter_params["weight_type"] += params_5["weight_type"]
ipadapter_params["start_at"] += params_5["start_at"]
ipadapter_params["end_at"] += params_5["end_at"]
return (ipadapter_params, )
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Register
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
NODE_CLASS_MAPPINGS = {
# Main Apply Nodes
"IPAdapter": IPAdapterSimple,
"IPAdapterAdvanced": IPAdapterAdvanced,
"IPAdapterBatch": IPAdapterBatch,
"IPAdapterFaceID": IPAdapterFaceID,
"IPAdapterFaceIDKolors": IPAdapterFaceIDKolors,
"IPAAdapterFaceIDBatch": IPAAdapterFaceIDBatch,
"IPAdapterTiled": IPAdapterTiled,
"IPAdapterTiledBatch": IPAdapterTiledBatch,
"IPAdapterEmbeds": IPAdapterEmbeds,
"IPAdapterEmbedsBatch": IPAdapterEmbedsBatch,
"IPAdapterStyleComposition": IPAdapterStyleComposition,
"IPAdapterStyleCompositionBatch": IPAdapterStyleCompositionBatch,
"IPAdapterMS": IPAdapterMS,
"IPAdapterClipVisionEnhancer": IPAdapterClipVisionEnhancer,
"IPAdapterClipVisionEnhancerBatch": IPAdapterClipVisionEnhancerBatch,
"IPAdapterFromParams": IPAdapterFromParams,
"IPAdapterPreciseStyleTransfer": IPAdapterPreciseStyleTransfer,
"IPAdapterPreciseStyleTransferBatch": IPAdapterPreciseStyleTransferBatch,
"IPAdapterPreciseComposition": IPAdapterPreciseComposition,
"IPAdapterPreciseCompositionBatch": IPAdapterPreciseCompositionBatch,
# Loaders
"IPAdapterUnifiedLoader": IPAdapterUnifiedLoader,
"IPAdapterUnifiedLoaderFaceID": IPAdapterUnifiedLoaderFaceID,
"IPAdapterModelLoader": IPAdapterModelLoader,
"IPAdapterInsightFaceLoader": IPAdapterInsightFaceLoader,
"IPAdapterUnifiedLoaderCommunity": IPAdapterUnifiedLoaderCommunity,
# Helpers
"IPAdapterEncoder": IPAdapterEncoder,
"IPAdapterCombineEmbeds": IPAdapterCombineEmbeds,
"IPAdapterNoise": IPAdapterNoise,
"PrepImageForClipVision": PrepImageForClipVision,
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds,
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds,
"IPAdapterWeights": IPAdapterWeights,
"IPAdapterCombineWeights": IPAdapterCombineWeights,
"IPAdapterWeightsFromStrategy": IPAdapterWeightsFromStrategy,
"IPAdapterPromptScheduleFromWeightsStrategy": IPAdapterPromptScheduleFromWeightsStrategy,
"IPAdapterRegionalConditioning": IPAdapterRegionalConditioning,
"IPAdapterCombineParams": IPAdapterCombineParams,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Main Apply Nodes
"IPAdapter": "IPAdapter",
"IPAdapterAdvanced": "IPAdapter Advanced",
"IPAdapterBatch": "IPAdapter Batch (Adv.)",
"IPAdapterFaceID": "IPAdapter FaceID",
"IPAdapterFaceIDKolors": "IPAdapter FaceID Kolors",
"IPAAdapterFaceIDBatch": "IPAdapter FaceID Batch",
"IPAdapterTiled": "IPAdapter Tiled",
"IPAdapterTiledBatch": "IPAdapter Tiled Batch",
"IPAdapterEmbeds": "IPAdapter Embeds",
"IPAdapterEmbedsBatch": "IPAdapter Embeds Batch",
"IPAdapterStyleComposition": "IPAdapter Style & Composition SDXL",
"IPAdapterStyleCompositionBatch": "IPAdapter Style & Composition Batch SDXL",
"IPAdapterMS": "IPAdapter Mad Scientist",
"IPAdapterClipVisionEnhancer": "IPAdapter ClipVision Enhancer",
"IPAdapterClipVisionEnhancerBatch": "IPAdapter ClipVision Enhancer Batch",
"IPAdapterFromParams": "IPAdapter from Params",
"IPAdapterPreciseStyleTransfer": "IPAdapter Precise Style Transfer",
"IPAdapterPreciseStyleTransferBatch": "IPAdapter Precise Style Transfer Batch",
"IPAdapterPreciseComposition": "IPAdapter Precise Composition",
"IPAdapterPreciseCompositionBatch": "IPAdapter Precise Composition Batch",
# Loaders
"IPAdapterUnifiedLoader": "IPAdapter Unified Loader",
"IPAdapterUnifiedLoaderFaceID": "IPAdapter Unified Loader FaceID",
"IPAdapterModelLoader": "IPAdapter Model Loader",
"IPAdapterInsightFaceLoader": "IPAdapter InsightFace Loader",
"IPAdapterUnifiedLoaderCommunity": "IPAdapter Unified Loader Community",
# Helpers
"IPAdapterEncoder": "IPAdapter Encoder",
"IPAdapterCombineEmbeds": "IPAdapter Combine Embeds",
"IPAdapterNoise": "IPAdapter Noise",
"PrepImageForClipVision": "Prep Image For ClipVision",
"IPAdapterSaveEmbeds": "IPAdapter Save Embeds",
"IPAdapterLoadEmbeds": "IPAdapter Load Embeds",
"IPAdapterWeights": "IPAdapter Weights",
"IPAdapterWeightsFromStrategy": "IPAdapter Weights From Strategy",
"IPAdapterPromptScheduleFromWeightsStrategy": "Prompt Schedule From Weights Strategy",
"IPAdapterCombineWeights": "IPAdapter Combine Weights",
"IPAdapterRegionalConditioning": "IPAdapter Regional Conditioning",
"IPAdapterCombineParams": "IPAdapter Combine Params",
}