Spaces:
Running
Running
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
Model from official source: https://github.com/microsoft/unilm/tree/master/beit | |
and | |
https://github.com/microsoft/unilm/tree/master/beit2 | |
@inproceedings{beit, | |
title={{BEiT}: {BERT} Pre-Training of Image Transformers}, | |
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei}, | |
booktitle={International Conference on Learning Representations}, | |
year={2022}, | |
url={https://openreview.net/forum?id=p-BhZSz59o4} | |
} | |
@article{beitv2, | |
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers}, | |
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei}, | |
year={2022}, | |
eprint={2208.06366}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
At this point only the 1k fine-tuned classification weights and model configs have been added, | |
see original source above for pre-training models and procedure. | |
Modifications by / Copyright 2021 Ross Wightman, original copyrights below | |
""" | |
# -------------------------------------------------------- | |
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Hangbo Bao | |
# Based on timm and DeiT code bases | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
import math | |
from functools import partial | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_ | |
from .registry import register_model | |
from .vision_transformer import checkpoint_filter_fn | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'beit_base_patch16_224': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'), | |
'beit_base_patch16_384': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, | |
), | |
'beit_base_patch16_224_in22k': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth', | |
num_classes=21841, | |
), | |
'beit_large_patch16_224': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'), | |
'beit_large_patch16_384': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, | |
), | |
'beit_large_patch16_512': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth', | |
input_size=(3, 512, 512), crop_pct=1.0, | |
), | |
'beit_large_patch16_224_in22k': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth', | |
num_classes=21841, | |
), | |
'beitv2_base_patch16_224': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD | |
), | |
'beitv2_base_patch16_224_in22k': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth', | |
num_classes=21841, | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD | |
), | |
'beitv2_large_patch16_224': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth', | |
crop_pct=0.95, | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD | |
), | |
'beitv2_large_patch16_224_in22k': _cfg( | |
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth', | |
num_classes=21841, | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD | |
), | |
} | |
def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor: | |
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
window_area = window_size[0] * window_size[1] | |
coords = torch.stack(torch.meshgrid( | |
[torch.arange(window_size[0]), | |
torch.arange(window_size[1])])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = num_relative_distance - 3 | |
relative_position_index[0:, 0] = num_relative_distance - 2 | |
relative_position_index[0, 0] = num_relative_distance - 1 | |
return relative_position_index | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, attn_drop=0., | |
proj_drop=0., window_size=None, attn_head_dim=None): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.k_bias = None | |
self.v_bias = None | |
if window_size: | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
self.register_buffer("relative_position_index", gen_relative_position_index(window_size)) | |
else: | |
self.window_size = None | |
self.relative_position_bias_table = None | |
self.relative_position_index = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def _get_rel_pos_bias(self): | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
return relative_position_bias.unsqueeze(0) | |
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): | |
B, N, C = x.shape | |
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if self.relative_position_bias_table is not None: | |
attn = attn + self._get_rel_pos_bias() | |
if shared_rel_pos_bias is not None: | |
attn = attn + shared_rel_pos_bias | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
window_size=None, attn_head_dim=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | |
window_size=window_size, attn_head_dim=attn_head_dim) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if init_values: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): | |
if self.gamma_1 is None: | |
x = x + self.drop_path(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class RelativePositionBias(nn.Module): | |
def __init__(self, window_size, num_heads): | |
super().__init__() | |
self.window_size = window_size | |
self.window_area = window_size[0] * window_size[1] | |
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) | |
# trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.register_buffer("relative_position_index", gen_relative_position_index(window_size)) | |
def forward(self): | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH | |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
class Beit(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg', | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., | |
attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, | |
head_init_scale=0.001): | |
super().__init__() | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.grad_checkpointing = False | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if use_shared_rel_pos_bias: | |
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads) | |
else: | |
self.rel_pos_bias = None | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None) | |
for i in range(depth)]) | |
use_fc_norm = self.global_pool == 'avg' | |
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) | |
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else None | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
# trunc_normal_(self.mask_token, std=.02) | |
self.fix_init_weight() | |
if isinstance(self.head, nn.Linear): | |
trunc_normal_(self.head.weight, std=.02) | |
self.head.weight.data.mul_(head_init_scale) | |
self.head.bias.data.mul_(head_init_scale) | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
nwd = {'pos_embed', 'cls_token'} | |
for n, _ in self.named_parameters(): | |
if 'relative_position_bias_table' in n: | |
nwd.add(n) | |
return nwd | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], | |
) | |
return matcher | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None | |
for blk in self.blocks: | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) | |
else: | |
x = blk(x, shared_rel_pos_bias=rel_pos_bias) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.fc_norm is not None: | |
x = x[:, 1:].mean(dim=1) | |
x = self.fc_norm(x) | |
else: | |
x = x[:, 0] | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _beit_checkpoint_filter_fn(state_dict, model): | |
if 'module' in state_dict: | |
# beit v2 didn't strip module | |
state_dict = state_dict['module'] | |
return checkpoint_filter_fn(state_dict, model) | |
def _create_beit(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Beit models.') | |
model = build_model_with_cfg( | |
Beit, variant, pretrained, | |
# FIXME an updated filter fn needed to interpolate rel pos emb if fine tuning to diff model sizes | |
pretrained_filter_fn=_beit_checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def beit_base_patch16_224(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) | |
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_base_patch16_384(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) | |
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_base_patch16_224_in22k(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) | |
model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_large_patch16_224(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_large_patch16_384(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_large_patch16_512(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs) | |
return model | |
def beit_large_patch16_224_in22k(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs) | |
return model | |
def beitv2_base_patch16_224(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def beitv2_base_patch16_224_in22k(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beitv2_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs) | |
return model | |
def beitv2_large_patch16_224(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def beitv2_large_patch16_224_in22k(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) | |
model = _create_beit('beitv2_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs) | |
return model | |