Spaces:
Running
Running
""" Bring-Your-Own-Attention Network | |
A flexible network w/ dataclass based config for stacking NN blocks including | |
self-attention (or similar) layers. | |
Currently used to implement experimental variants of: | |
* Bottleneck Transformers | |
* Lambda ResNets | |
* HaloNets | |
Consider all of the models definitions here as experimental WIP and likely to change. | |
Hacked together by / copyright Ross Wightman, 2021. | |
""" | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks | |
from .helpers import build_model_with_cfg | |
from .registry import register_model | |
__all__ = [] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.95, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', | |
'fixed_input_size': False, 'min_input_size': (3, 224, 224), | |
**kwargs | |
} | |
default_cfgs = { | |
# GPU-Efficient (ResNet) weights | |
'botnet26t_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
'sebotnet33ts_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), | |
'botnet50ts_256': _cfg( | |
url='', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
'eca_botnext26ts_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_botnext26ts_c_256-95a898f6.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
'halonet26t': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_a1h_256-3083328c.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
'sehalonet33ts': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), | |
'halonet50ts': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), | |
'eca_halonext26ts': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), | |
'lambda_resnet26t': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26t_c_256-e5a5c857.pth', | |
min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), | |
'lambda_resnet50ts': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet50ts_a1h_256-b87370f7.pth', | |
min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), | |
'lambda_resnet26rpt_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26rpt_c_256-ab00292d.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), | |
'haloregnetz_b': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/haloregnetz_c_raa_256-c8ad7616.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
first_conv='stem.conv', input_size=(3, 224, 224), pool_size=(7, 7), min_input_size=(3, 224, 224), crop_pct=0.94), | |
'lamhalobotnet50ts_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lamhalobotnet50ts_a1h2_256-fe3d9445.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
'halo2botnet50ts_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halo2botnet50ts_a1h2_256-fd9c11a3.pth', | |
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
} | |
model_cfgs = dict( | |
botnet26t=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
fixed_input_size=True, | |
self_attn_layer='bottleneck', | |
self_attn_kwargs=dict() | |
), | |
sebotnet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
act_layer='silu', | |
num_features=1280, | |
attn_layer='se', | |
self_attn_layer='bottleneck', | |
self_attn_kwargs=dict() | |
), | |
botnet50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
fixed_input_size=True, | |
self_attn_layer='bottleneck', | |
self_attn_kwargs=dict() | |
), | |
eca_botnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
fixed_input_size=True, | |
act_layer='silu', | |
attn_layer='eca', | |
self_attn_layer='bottleneck', | |
self_attn_kwargs=dict(dim_head=16) | |
), | |
halonet_h1=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0), | |
ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0), | |
ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), | |
ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0), | |
), | |
stem_chs=64, | |
stem_type='7x7', | |
stem_pool='maxpool', | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=8, halo_size=3), | |
), | |
halonet26t=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=8, halo_size=2) | |
), | |
sehalonet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
act_layer='silu', | |
num_features=1280, | |
attn_layer='se', | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=8, halo_size=3) | |
), | |
halonet50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25, | |
self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3, num_heads=4)), | |
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=8, halo_size=3) | |
), | |
eca_halonext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
attn_layer='eca', | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16) | |
), | |
lambda_resnet26t=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
self_attn_layer='lambda', | |
self_attn_kwargs=dict(r=9) | |
), | |
lambda_resnet50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
self_attn_layer='lambda', | |
self_attn_kwargs=dict(r=9) | |
), | |
lambda_resnet26rpt_256=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
self_attn_layer='lambda', | |
self_attn_kwargs=dict(r=None) | |
), | |
# experimental | |
haloregnetz_b=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), | |
interleave_blocks(types=('bottle', 'self_attn'), every=3, d=12, c=192, s=2, gs=16, br=3), | |
ByoBlockCfg('self_attn', d=2, c=288, s=2, gs=16, br=3), | |
), | |
stem_chs=32, | |
stem_pool='', | |
downsample='', | |
num_features=1536, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
self_attn_layer='halo', | |
self_attn_kwargs=dict(block_size=7, halo_size=2, qk_ratio=0.33) | |
), | |
# experimental | |
lamhalobotnet50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, | |
self_attn_layer='lambda', self_attn_kwargs=dict(r=13)), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, | |
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, | |
self_attn_layer='bottleneck', self_attn_kwargs=dict()), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
act_layer='silu', | |
), | |
halo2botnet50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, | |
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, | |
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), | |
interleave_blocks( | |
types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, | |
self_attn_layer='bottleneck', self_attn_kwargs=dict()), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
act_layer='silu', | |
), | |
) | |
def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ByobNet, variant, pretrained, | |
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], | |
feature_cfg=dict(flatten_sequential=True), | |
**kwargs) | |
def botnet26t_256(pretrained=False, **kwargs): | |
""" Bottleneck Transformer w/ ResNet26-T backbone. | |
""" | |
kwargs.setdefault('img_size', 256) | |
return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs) | |
def sebotnet33ts_256(pretrained=False, **kwargs): | |
""" Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, | |
""" | |
return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs) | |
def botnet50ts_256(pretrained=False, **kwargs): | |
""" Bottleneck Transformer w/ ResNet50-T backbone, silu act. | |
""" | |
kwargs.setdefault('img_size', 256) | |
return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs) | |
def eca_botnext26ts_256(pretrained=False, **kwargs): | |
""" Bottleneck Transformer w/ ResNet26-T backbone, silu act. | |
""" | |
kwargs.setdefault('img_size', 256) | |
return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs) | |
def halonet_h1(pretrained=False, **kwargs): | |
""" HaloNet-H1. Halo attention in all stages as per the paper. | |
NOTE: This runs very slowly! | |
""" | |
return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) | |
def halonet26t(pretrained=False, **kwargs): | |
""" HaloNet w/ a ResNet26-t backbone. Halo attention in final two stages | |
""" | |
return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) | |
def sehalonet33ts(pretrained=False, **kwargs): | |
""" HaloNet w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, 1-2 Halo in stage 2,3,4. | |
""" | |
return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs) | |
def halonet50ts(pretrained=False, **kwargs): | |
""" HaloNet w/ a ResNet50-t backbone, silu act. Halo attention in final two stages | |
""" | |
return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs) | |
def eca_halonext26ts(pretrained=False, **kwargs): | |
""" HaloNet w/ a ResNet26-t backbone, silu act. Halo attention in final two stages | |
""" | |
return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs) | |
def lambda_resnet26t(pretrained=False, **kwargs): | |
""" Lambda-ResNet-26-T. Lambda layers w/ conv pos in last two stages. | |
""" | |
return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) | |
def lambda_resnet50ts(pretrained=False, **kwargs): | |
""" Lambda-ResNet-50-TS. SiLU act. Lambda layers w/ conv pos in last two stages. | |
""" | |
return _create_byoanet('lambda_resnet50ts', pretrained=pretrained, **kwargs) | |
def lambda_resnet26rpt_256(pretrained=False, **kwargs): | |
""" Lambda-ResNet-26-R-T. Lambda layers w/ rel pos embed in last two stages. | |
""" | |
kwargs.setdefault('img_size', 256) | |
return _create_byoanet('lambda_resnet26rpt_256', pretrained=pretrained, **kwargs) | |
def haloregnetz_b(pretrained=False, **kwargs): | |
""" Halo + RegNetZ | |
""" | |
return _create_byoanet('haloregnetz_b', pretrained=pretrained, **kwargs) | |
def lamhalobotnet50ts_256(pretrained=False, **kwargs): | |
""" Combo Attention (Lambda + Halo + Bot) Network | |
""" | |
return _create_byoanet('lamhalobotnet50ts_256', 'lamhalobotnet50ts', pretrained=pretrained, **kwargs) | |
def halo2botnet50ts_256(pretrained=False, **kwargs): | |
""" Combo Attention (Halo + Halo + Bot) Network | |
""" | |
return _create_byoanet('halo2botnet50ts_256', 'halo2botnet50ts', pretrained=pretrained, **kwargs) | |