Spaces:
Running
Running
""" Bring-Your-Own-Blocks Network | |
A flexible network w/ dataclass based config for stacking those NN blocks. | |
This model is currently used to implement the following networks: | |
GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)). | |
Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 | |
Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0 | |
RepVGG - repvgg_* | |
Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT | |
In all cases the models have been modified to fit within the design of ByobNet. I've remapped | |
the original weights and verified accuracies. | |
For GPU Efficient nets, I used the original names for the blocks since they were for the most part | |
the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some | |
changes introduced in RegNet were also present in the stem and bottleneck blocks for this model. | |
A significant number of different network archs can be implemented here, including variants of the | |
above nets that include attention. | |
Hacked together by / copyright Ross Wightman, 2021. | |
""" | |
import math | |
from dataclasses import dataclass, field, replace | |
from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, named_apply, checkpoint_seq | |
from .layers import ClassifierHead, ConvNormAct, BatchNormAct2d, DropPath, AvgPool2dSame, \ | |
create_conv2d, get_act_layer, get_norm_act_layer, get_attn, make_divisible, to_2tuple, EvoNorm2dS0, EvoNorm2dS0a,\ | |
EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a, FilterResponseNormAct2d, FilterResponseNormTlu2d | |
from .registry import register_model | |
__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.conv', 'classifier': 'head.fc', | |
**kwargs | |
} | |
def _cfgr(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), | |
'crop_pct': 0.9, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', | |
**kwargs | |
} | |
default_cfgs = { | |
# GPU-Efficient (ResNet) weights | |
'gernet_s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_s-756b4751.pth'), | |
'gernet_m': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_m-0873c53a.pth'), | |
'gernet_l': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_l-f31e2e8d.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
# RepVGG weights | |
'repvgg_a2': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_a2-c1ee6d2b.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b0': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b0-80ac3f1b.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b1': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1-77ca2989.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b1g4': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1g4-abde5d92.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b2': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2-25b7494e.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b2g4': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2g4-165a85f2.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b3': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3-199bc50d.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
'repvgg_b3g4': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3g4-73c370bf.pth', | |
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), | |
# experimental configs | |
'resnet51q': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', | |
first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8), | |
test_input_size=(3, 288, 288), crop_pct=1.0), | |
'resnet61q': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth', | |
test_input_size=(3, 288, 288), crop_pct=1.0), | |
'resnext26ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth'), | |
'gcresnext26ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth'), | |
'seresnext26ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth'), | |
'eca_resnext26ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth'), | |
'bat_resnext26ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth', | |
min_input_size=(3, 256, 256)), | |
'resnet32ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth'), | |
'resnet33ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth'), | |
'gcresnet33ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth'), | |
'seresnet33ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth'), | |
'eca_resnet33ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth'), | |
'gcresnet50t': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth'), | |
'gcresnext50ts': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth'), | |
# experimental models, likely to change ot be removed | |
'regnetz_b16': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
input_size=(3, 224, 224), pool_size=(7, 7), test_input_size=(3, 288, 288), first_conv='stem.conv', crop_pct=0.94), | |
'regnetz_c16': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), first_conv='stem.conv', crop_pct=0.94), | |
'regnetz_d32': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=0.95), | |
'regnetz_d8': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=1.0), | |
'regnetz_e8': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=1.0), | |
'regnetz_b16_evos': _cfgr( | |
url='', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
input_size=(3, 224, 224), pool_size=(7, 7), test_input_size=(3, 288, 288), first_conv='stem.conv', | |
crop_pct=0.94), | |
'regnetz_c16_evos': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_c16_evos_ch-d8311942.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), first_conv='stem.conv', crop_pct=0.95), | |
'regnetz_d8_evos': _cfgr( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_d8_evos_ch-2bc12646.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), test_input_size=(3, 320, 320), crop_pct=0.95), | |
} | |
class ByoBlockCfg: | |
type: Union[str, nn.Module] | |
d: int # block depth (number of block repeats in stage) | |
c: int # number of output channels for each block in stage | |
s: int = 2 # stride of stage (first block) | |
gs: Optional[Union[int, Callable]] = None # group-size of blocks in stage, conv is depthwise if gs == 1 | |
br: float = 1. # bottleneck-ratio of blocks in stage | |
# NOTE: these config items override the model cfgs that are applied to all blocks by default | |
attn_layer: Optional[str] = None | |
attn_kwargs: Optional[Dict[str, Any]] = None | |
self_attn_layer: Optional[str] = None | |
self_attn_kwargs: Optional[Dict[str, Any]] = None | |
block_kwargs: Optional[Dict[str, Any]] = None | |
class ByoModelCfg: | |
blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...] | |
downsample: str = 'conv1x1' | |
stem_type: str = '3x3' | |
stem_pool: Optional[str] = 'maxpool' | |
stem_chs: int = 32 | |
width_factor: float = 1.0 | |
num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0 | |
zero_init_last: bool = True # zero init last weight (usually bn) in residual path | |
fixed_input_size: bool = False # model constrained to a fixed-input size / img_size must be provided on creation | |
act_layer: str = 'relu' | |
norm_layer: str = 'batchnorm' | |
# NOTE: these config items will be overridden by the block cfg (per-block) if they are set there | |
attn_layer: Optional[str] = None | |
attn_kwargs: dict = field(default_factory=lambda: dict()) | |
self_attn_layer: Optional[str] = None | |
self_attn_kwargs: dict = field(default_factory=lambda: dict()) | |
block_kwargs: Dict[str, Any] = field(default_factory=lambda: dict()) | |
def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0): | |
c = (64, 128, 256, 512) | |
group_size = 0 | |
if groups > 0: | |
group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0 | |
bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)]) | |
return bcfg | |
def interleave_blocks( | |
types: Tuple[str, str], d, every: Union[int, List[int]] = 1, first: bool = False, **kwargs | |
) -> Tuple[ByoBlockCfg]: | |
""" interleave 2 block types in stack | |
""" | |
assert len(types) == 2 | |
if isinstance(every, int): | |
every = list(range(0 if first else every, d, every + 1)) | |
if not every: | |
every = [d - 1] | |
set(every) | |
blocks = [] | |
for i in range(d): | |
block_type = types[1] if i in every else types[0] | |
blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)] | |
return tuple(blocks) | |
model_cfgs = dict( | |
gernet_l=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), | |
ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.), | |
ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.), | |
), | |
stem_chs=32, | |
stem_pool=None, | |
num_features=2560, | |
), | |
gernet_m=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), | |
ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.), | |
ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.), | |
), | |
stem_chs=32, | |
stem_pool=None, | |
num_features=2560, | |
), | |
gernet_s=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.), | |
ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4), | |
ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.), | |
ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.), | |
), | |
stem_chs=13, | |
stem_pool=None, | |
num_features=1920, | |
), | |
repvgg_a2=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b0=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b1=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b1g4=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b2=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b2g4=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b3=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
repvgg_b3g4=ByoModelCfg( | |
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4), | |
stem_type='rep', | |
stem_chs=64, | |
), | |
# 4 x conv stem w/ 2 act, no maxpool, 2,4,6,4 repeats, group size 32 in first 3 blocks | |
# DW convs in last block, 2048 pre-FC, silu act | |
resnet51q=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), | |
), | |
stem_chs=128, | |
stem_type='quad2', | |
stem_pool=None, | |
num_features=2048, | |
act_layer='silu', | |
), | |
# 4 x conv stem w/ 4 act, no maxpool, 1,4,6,4 repeats, edge block first, group size 32 in next 2 blocks | |
# DW convs in last block, 4 conv for each bottle block, 2048 pre-FC, silu act | |
resnet61q=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()), | |
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), | |
), | |
stem_chs=128, | |
stem_type='quad', | |
stem_pool=None, | |
num_features=2048, | |
act_layer='silu', | |
block_kwargs=dict(extra_conv=True), | |
), | |
# A series of ResNeXt-26 models w/ one of none, GC, SE, ECA, BAT attn, group size 32, SiLU act, | |
# and a tiered stem w/ maxpool | |
resnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
), | |
gcresnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
attn_layer='gca', | |
), | |
seresnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
attn_layer='se', | |
), | |
eca_resnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
attn_layer='eca', | |
), | |
bat_resnext26ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
act_layer='silu', | |
attn_layer='bat', | |
attn_kwargs=dict(block_size=8) | |
), | |
# ResNet-32 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, no pre-fc feat layer, tiered stem w/o maxpool | |
resnet32ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
num_features=0, | |
act_layer='silu', | |
), | |
# ResNet-33 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, 1280 pre-FC feat, tiered stem w/o maxpool | |
resnet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
num_features=1280, | |
act_layer='silu', | |
), | |
# A series of ResNet-33 (2, 3, 3, 2) models w/ one of GC, SE, ECA attn, no groups, SiLU act, 1280 pre-FC feat | |
# and a tiered stem w/ no maxpool | |
gcresnet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
num_features=1280, | |
act_layer='silu', | |
attn_layer='gca', | |
), | |
seresnet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
num_features=1280, | |
act_layer='silu', | |
attn_layer='se', | |
), | |
eca_resnet33ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), | |
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
num_features=1280, | |
act_layer='silu', | |
attn_layer='eca', | |
), | |
gcresnet50t=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), | |
ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), | |
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
attn_layer='gca', | |
), | |
gcresnext50ts=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25), | |
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='maxpool', | |
# stem_pool=None, | |
act_layer='silu', | |
attn_layer='gca', | |
), | |
# experimental models, closer to a RegNetZ than a ResNet. Similar to EfficientNets but w/ groups instead of DW | |
regnetz_b16=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), | |
), | |
stem_chs=32, | |
stem_pool='', | |
downsample='', | |
num_features=1536, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_c16=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), | |
), | |
stem_chs=32, | |
stem_pool='', | |
downsample='', | |
num_features=1536, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_d32=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4), | |
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4), | |
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=32, br=4), | |
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=32, br=4), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
downsample='', | |
num_features=1792, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_d8=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
downsample='', | |
num_features=1792, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_e8=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=96, s=1, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=8, c=192, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=16, c=384, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=8, br=4), | |
), | |
stem_chs=64, | |
stem_type='tiered', | |
stem_pool='', | |
downsample='', | |
num_features=2048, | |
act_layer='silu', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
# experimental EvoNorm configs | |
regnetz_b16_evos=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), | |
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), | |
), | |
stem_chs=32, | |
stem_pool='', | |
downsample='', | |
num_features=1536, | |
act_layer='silu', | |
norm_layer=partial(EvoNorm2dS0a, group_size=16), | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_c16_evos=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), | |
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), | |
), | |
stem_chs=32, | |
stem_pool='', | |
downsample='', | |
num_features=1536, | |
act_layer='silu', | |
norm_layer=partial(EvoNorm2dS0a, group_size=16), | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
regnetz_d8_evos=ByoModelCfg( | |
blocks=( | |
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), | |
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), | |
), | |
stem_chs=64, | |
stem_type='deep', | |
stem_pool='', | |
downsample='', | |
num_features=1792, | |
act_layer='silu', | |
norm_layer=partial(EvoNorm2dS0a, group_size=16), | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=0.25), | |
block_kwargs=dict(bottle_in=True, linear_out=True), | |
), | |
) | |
def gernet_l(pretrained=False, **kwargs): | |
""" GEResNet-Large (GENet-Large from official impl) | |
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 | |
""" | |
return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs) | |
def gernet_m(pretrained=False, **kwargs): | |
""" GEResNet-Medium (GENet-Normal from official impl) | |
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 | |
""" | |
return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs) | |
def gernet_s(pretrained=False, **kwargs): | |
""" EResNet-Small (GENet-Small from official impl) | |
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 | |
""" | |
return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs) | |
def repvgg_a2(pretrained=False, **kwargs): | |
""" RepVGG-A2 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs) | |
def repvgg_b0(pretrained=False, **kwargs): | |
""" RepVGG-B0 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs) | |
def repvgg_b1(pretrained=False, **kwargs): | |
""" RepVGG-B1 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs) | |
def repvgg_b1g4(pretrained=False, **kwargs): | |
""" RepVGG-B1g4 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs) | |
def repvgg_b2(pretrained=False, **kwargs): | |
""" RepVGG-B2 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs) | |
def repvgg_b2g4(pretrained=False, **kwargs): | |
""" RepVGG-B2g4 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs) | |
def repvgg_b3(pretrained=False, **kwargs): | |
""" RepVGG-B3 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs) | |
def repvgg_b3g4(pretrained=False, **kwargs): | |
""" RepVGG-B3g4 | |
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 | |
""" | |
return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs) | |
def resnet51q(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs) | |
def resnet61q(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs) | |
def resnext26ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs) | |
def gcresnext26ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs) | |
def seresnext26ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs) | |
def eca_resnext26ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs) | |
def bat_resnext26ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs) | |
def resnet32ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs) | |
def resnet33ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs) | |
def gcresnet33ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs) | |
def seresnet33ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs) | |
def eca_resnet33ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs) | |
def gcresnet50t(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs) | |
def gcresnext50ts(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs) | |
def regnetz_b16(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs) | |
def regnetz_c16(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs) | |
def regnetz_d32(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs) | |
def regnetz_d8(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_d8', pretrained=pretrained, **kwargs) | |
def regnetz_e8(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs) | |
def regnetz_b16_evos(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_b16_evos', pretrained=pretrained, **kwargs) | |
def regnetz_c16_evos(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_c16_evos', pretrained=pretrained, **kwargs) | |
def regnetz_d8_evos(pretrained=False, **kwargs): | |
""" | |
""" | |
return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs) | |
def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]: | |
if not isinstance(stage_blocks_cfg, Sequence): | |
stage_blocks_cfg = (stage_blocks_cfg,) | |
block_cfgs = [] | |
for i, cfg in enumerate(stage_blocks_cfg): | |
block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)] | |
return block_cfgs | |
def num_groups(group_size, channels): | |
if not group_size: # 0 or None | |
return 1 # normal conv with 1 group | |
else: | |
# NOTE group_size == 1 -> depthwise conv | |
assert channels % group_size == 0 | |
return channels // group_size | |
class LayerFn: | |
conv_norm_act: Callable = ConvNormAct | |
norm_act: Callable = BatchNormAct2d | |
act: Callable = nn.ReLU | |
attn: Optional[Callable] = None | |
self_attn: Optional[Callable] = None | |
class DownsampleAvg(nn.Module): | |
def __init__(self, in_chs, out_chs, stride=1, dilation=1, apply_act=False, layers: LayerFn = None): | |
""" AvgPool Downsampling as in 'D' ResNet variants.""" | |
super(DownsampleAvg, self).__init__() | |
layers = layers or LayerFn() | |
avg_stride = stride if dilation == 1 else 1 | |
if stride > 1 or dilation > 1: | |
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d | |
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) | |
else: | |
self.pool = nn.Identity() | |
self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act) | |
def forward(self, x): | |
return self.conv(self.pool(x)) | |
def create_shortcut(downsample_type, layers: LayerFn, in_chs, out_chs, stride, dilation, **kwargs): | |
assert downsample_type in ('avg', 'conv1x1', '') | |
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: | |
if not downsample_type: | |
return None # no shortcut | |
elif downsample_type == 'avg': | |
return DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation[0], **kwargs) | |
else: | |
return layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation[0], **kwargs) | |
else: | |
return nn.Identity() # identity shortcut | |
class BasicBlock(nn.Module): | |
""" ResNet Basic Block - kxk + kxk | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), group_size=None, bottle_ratio=1.0, | |
downsample='avg', attn_last=True, linear_out=False, layers: LayerFn = None, drop_block=None, | |
drop_path_rate=0.): | |
super(BasicBlock, self).__init__() | |
layers = layers or LayerFn() | |
mid_chs = make_divisible(out_chs * bottle_ratio) | |
groups = num_groups(group_size, mid_chs) | |
self.shortcut = create_shortcut( | |
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation, | |
apply_act=False, layers=layers) | |
self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0]) | |
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) | |
self.conv2_kxk = layers.conv_norm_act( | |
mid_chs, out_chs, kernel_size, dilation=dilation[1], groups=groups, drop_layer=drop_block, apply_act=False) | |
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.act = nn.Identity() if linear_out else layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
if zero_init_last and self.shortcut is not None: | |
nn.init.zeros_(self.conv2_kxk.bn.weight) | |
for attn in (self.attn, self.attn_last): | |
if hasattr(attn, 'reset_parameters'): | |
attn.reset_parameters() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1_kxk(x) | |
x = self.conv2_kxk(x) | |
x = self.attn(x) | |
x = self.drop_path(x) | |
if self.shortcut is not None: | |
x = x + self.shortcut(shortcut) | |
return self.act(x) | |
class BottleneckBlock(nn.Module): | |
""" ResNet-like Bottleneck Block - 1x1 - kxk - 1x1 | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1., group_size=None, | |
downsample='avg', attn_last=False, linear_out=False, extra_conv=False, bottle_in=False, | |
layers: LayerFn = None, drop_block=None, drop_path_rate=0.): | |
super(BottleneckBlock, self).__init__() | |
layers = layers or LayerFn() | |
mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) | |
groups = num_groups(group_size, mid_chs) | |
self.shortcut = create_shortcut( | |
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation, | |
apply_act=False, layers=layers) | |
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) | |
self.conv2_kxk = layers.conv_norm_act( | |
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block) | |
if extra_conv: | |
self.conv2b_kxk = layers.conv_norm_act(mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups) | |
else: | |
self.conv2b_kxk = nn.Identity() | |
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) | |
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) | |
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.act = nn.Identity() if linear_out else layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
if zero_init_last and self.shortcut is not None: | |
nn.init.zeros_(self.conv3_1x1.bn.weight) | |
for attn in (self.attn, self.attn_last): | |
if hasattr(attn, 'reset_parameters'): | |
attn.reset_parameters() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1_1x1(x) | |
x = self.conv2_kxk(x) | |
x = self.conv2b_kxk(x) | |
x = self.attn(x) | |
x = self.conv3_1x1(x) | |
x = self.attn_last(x) | |
x = self.drop_path(x) | |
if self.shortcut is not None: | |
x = x + self.shortcut(shortcut) | |
return self.act(x) | |
class DarkBlock(nn.Module): | |
""" DarkNet-like (1x1 + 3x3 w/ stride) block | |
The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models. | |
This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet | |
uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats). | |
If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1) | |
for more optimal compute. | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, | |
downsample='avg', attn_last=True, linear_out=False, layers: LayerFn = None, drop_block=None, | |
drop_path_rate=0.): | |
super(DarkBlock, self).__init__() | |
layers = layers or LayerFn() | |
mid_chs = make_divisible(out_chs * bottle_ratio) | |
groups = num_groups(group_size, mid_chs) | |
self.shortcut = create_shortcut( | |
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation, | |
apply_act=False, layers=layers) | |
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) | |
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) | |
self.conv2_kxk = layers.conv_norm_act( | |
mid_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], | |
groups=groups, drop_layer=drop_block, apply_act=False) | |
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.act = nn.Identity() if linear_out else layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
if zero_init_last and self.shortcut is not None: | |
nn.init.zeros_(self.conv2_kxk.bn.weight) | |
for attn in (self.attn, self.attn_last): | |
if hasattr(attn, 'reset_parameters'): | |
attn.reset_parameters() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1_1x1(x) | |
x = self.attn(x) | |
x = self.conv2_kxk(x) | |
x = self.attn_last(x) | |
x = self.drop_path(x) | |
if self.shortcut is not None: | |
x = x + self.shortcut(shortcut) | |
return self.act(x) | |
class EdgeBlock(nn.Module): | |
""" EdgeResidual-like (3x3 + 1x1) block | |
A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed. | |
Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is | |
intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs. | |
FIXME is there a more common 3x3 + 1x1 conv block to name this after? | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, | |
downsample='avg', attn_last=False, linear_out=False, layers: LayerFn = None, | |
drop_block=None, drop_path_rate=0.): | |
super(EdgeBlock, self).__init__() | |
layers = layers or LayerFn() | |
mid_chs = make_divisible(out_chs * bottle_ratio) | |
groups = num_groups(group_size, mid_chs) | |
self.shortcut = create_shortcut( | |
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation, | |
apply_act=False, layers=layers) | |
self.conv1_kxk = layers.conv_norm_act( | |
in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block) | |
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) | |
self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) | |
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.act = nn.Identity() if linear_out else layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
if zero_init_last and self.shortcut is not None: | |
nn.init.zeros_(self.conv2_1x1.bn.weight) | |
for attn in (self.attn, self.attn_last): | |
if hasattr(attn, 'reset_parameters'): | |
attn.reset_parameters() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1_kxk(x) | |
x = self.attn(x) | |
x = self.conv2_1x1(x) | |
x = self.attn_last(x) | |
x = self.drop_path(x) | |
if self.shortcut is not None: | |
x = x + self.shortcut(shortcut) | |
return self.act(x) | |
class RepVggBlock(nn.Module): | |
""" RepVGG Block. | |
Adapted from impl at https://github.com/DingXiaoH/RepVGG | |
This version does not currently support the deploy optimization. It is currently fixed in 'train' mode. | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, | |
downsample='', layers: LayerFn = None, drop_block=None, drop_path_rate=0.): | |
super(RepVggBlock, self).__init__() | |
layers = layers or LayerFn() | |
groups = num_groups(group_size, in_chs) | |
use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] | |
self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None | |
self.conv_kxk = layers.conv_norm_act( | |
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], | |
groups=groups, drop_layer=drop_block, apply_act=False) | |
self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False) | |
self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() | |
self.act = layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
# NOTE this init overrides that base model init with specific changes for the block type | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
nn.init.normal_(m.weight, .1, .1) | |
nn.init.normal_(m.bias, 0, .1) | |
if hasattr(self.attn, 'reset_parameters'): | |
self.attn.reset_parameters() | |
def forward(self, x): | |
if self.identity is None: | |
x = self.conv_1x1(x) + self.conv_kxk(x) | |
else: | |
identity = self.identity(x) | |
x = self.conv_1x1(x) + self.conv_kxk(x) | |
x = self.drop_path(x) # not in the paper / official impl, experimental | |
x = x + identity | |
x = self.attn(x) # no attn in the paper / official impl, experimental | |
return self.act(x) | |
class SelfAttnBlock(nn.Module): | |
""" ResNet-like Bottleneck Block - 1x1 - optional kxk - self attn - 1x1 | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1., group_size=None, | |
downsample='avg', extra_conv=False, linear_out=False, bottle_in=False, post_attn_na=True, | |
feat_size=None, layers: LayerFn = None, drop_block=None, drop_path_rate=0.): | |
super(SelfAttnBlock, self).__init__() | |
assert layers is not None | |
mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) | |
groups = num_groups(group_size, mid_chs) | |
self.shortcut = create_shortcut( | |
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation, | |
apply_act=False, layers=layers) | |
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) | |
if extra_conv: | |
self.conv2_kxk = layers.conv_norm_act( | |
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], | |
groups=groups, drop_layer=drop_block) | |
stride = 1 # striding done via conv if enabled | |
else: | |
self.conv2_kxk = nn.Identity() | |
opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size) | |
# FIXME need to dilate self attn to have dilated network support, moop moop | |
self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs) | |
self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity() | |
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.act = nn.Identity() if linear_out else layers.act(inplace=True) | |
def init_weights(self, zero_init_last: bool = False): | |
if zero_init_last and self.shortcut is not None: | |
nn.init.zeros_(self.conv3_1x1.bn.weight) | |
if hasattr(self.self_attn, 'reset_parameters'): | |
self.self_attn.reset_parameters() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1_1x1(x) | |
x = self.conv2_kxk(x) | |
x = self.self_attn(x) | |
x = self.post_attn(x) | |
x = self.conv3_1x1(x) | |
x = self.drop_path(x) | |
if self.shortcut is not None: | |
x = x + self.shortcut(shortcut) | |
return self.act(x) | |
_block_registry = dict( | |
basic=BasicBlock, | |
bottle=BottleneckBlock, | |
dark=DarkBlock, | |
edge=EdgeBlock, | |
rep=RepVggBlock, | |
self_attn=SelfAttnBlock, | |
) | |
def register_block(block_type:str, block_fn: nn.Module): | |
_block_registry[block_type] = block_fn | |
def create_block(block: Union[str, nn.Module], **kwargs): | |
if isinstance(block, (nn.Module, partial)): | |
return block(**kwargs) | |
assert block in _block_registry, f'Unknown block type ({block}' | |
return _block_registry[block](**kwargs) | |
class Stem(nn.Sequential): | |
def __init__( | |
self, in_chs, out_chs, kernel_size=3, stride=4, pool='maxpool', | |
num_rep=3, num_act=None, chs_decay=0.5, layers: LayerFn = None): | |
super().__init__() | |
assert stride in (2, 4) | |
layers = layers or LayerFn() | |
if isinstance(out_chs, (list, tuple)): | |
num_rep = len(out_chs) | |
stem_chs = out_chs | |
else: | |
stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1] | |
self.stride = stride | |
self.feature_info = [] # track intermediate features | |
prev_feat = '' | |
stem_strides = [2] + [1] * (num_rep - 1) | |
if stride == 4 and not pool: | |
# set last conv in stack to be strided if stride == 4 and no pooling layer | |
stem_strides[-1] = 2 | |
num_act = num_rep if num_act is None else num_act | |
# if num_act < num_rep, first convs in stack won't have bn + act | |
stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act | |
prev_chs = in_chs | |
curr_stride = 1 | |
for i, (ch, s, na) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)): | |
layer_fn = layers.conv_norm_act if na else create_conv2d | |
conv_name = f'conv{i + 1}' | |
if i > 0 and s > 1: | |
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) | |
self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) | |
prev_chs = ch | |
curr_stride *= s | |
prev_feat = conv_name | |
if pool and 'max' in pool.lower(): | |
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) | |
self.add_module('pool', nn.MaxPool2d(3, 2, 1)) | |
curr_stride *= 2 | |
prev_feat = 'pool' | |
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) | |
assert curr_stride == stride | |
def create_byob_stem(in_chs, out_chs, stem_type='', pool_type='', feat_prefix='stem', layers: LayerFn = None): | |
layers = layers or LayerFn() | |
assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', '7x7', '3x3') | |
if 'quad' in stem_type: | |
# based on NFNet stem, stack of 4 3x3 convs | |
num_act = 2 if 'quad2' in stem_type else None | |
stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers) | |
elif 'tiered' in stem_type: | |
# 3x3 stack of 3 convs as in my ResNet-T | |
stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers) | |
elif 'deep' in stem_type: | |
# 3x3 stack of 3 convs as in ResNet-D | |
stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers) | |
elif 'rep' in stem_type: | |
stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers) | |
elif '7x7' in stem_type: | |
# 7x7 stem conv as in ResNet | |
if pool_type: | |
stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers) | |
else: | |
stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2) | |
else: | |
# 3x3 stem conv as in RegNet is the default | |
if pool_type: | |
stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers) | |
else: | |
stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2) | |
if isinstance(stem, Stem): | |
feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info] | |
else: | |
feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix)] | |
return stem, feature_info | |
def reduce_feat_size(feat_size, stride=2): | |
return None if feat_size is None else tuple([s // stride for s in feat_size]) | |
def override_kwargs(block_kwargs, model_kwargs): | |
""" Override model level attn/self-attn/block kwargs w/ block level | |
NOTE: kwargs are NOT merged across levels, block_kwargs will fully replace model_kwargs | |
for the block if set to anything that isn't None. | |
i.e. an empty block_kwargs dict will remove kwargs set at model level for that block | |
""" | |
out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs | |
return out_kwargs or {} # make sure None isn't returned | |
def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg, ): | |
layer_fns = block_kwargs['layers'] | |
# override attn layer / args with block local config | |
attn_set = block_cfg.attn_layer is not None | |
if attn_set or block_cfg.attn_kwargs is not None: | |
# override attn layer config | |
if attn_set and not block_cfg.attn_layer: | |
# empty string for attn_layer type will disable attn for this block | |
attn_layer = None | |
else: | |
attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs) | |
attn_layer = block_cfg.attn_layer or model_cfg.attn_layer | |
attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None | |
layer_fns = replace(layer_fns, attn=attn_layer) | |
# override self-attn layer / args with block local cfg | |
self_attn_set = block_cfg.self_attn_layer is not None | |
if self_attn_set or block_cfg.self_attn_kwargs is not None: | |
# override attn layer config | |
if self_attn_set and not block_cfg.self_attn_layer: # attn_layer == '' | |
# empty string for self_attn_layer type will disable attn for this block | |
self_attn_layer = None | |
else: | |
self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs) | |
self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer | |
self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) \ | |
if self_attn_layer is not None else None | |
layer_fns = replace(layer_fns, self_attn=self_attn_layer) | |
block_kwargs['layers'] = layer_fns | |
# add additional block_kwargs specified in block_cfg or model_cfg, precedence to block if set | |
block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs)) | |
def create_byob_stages( | |
cfg: ByoModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], | |
feat_size: Optional[int] = None, | |
layers: Optional[LayerFn] = None, | |
block_kwargs_fn: Optional[Callable] = update_block_kwargs): | |
layers = layers or LayerFn() | |
feature_info = [] | |
block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks] | |
depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs] | |
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] | |
dilation = 1 | |
net_stride = stem_feat['reduction'] | |
prev_chs = stem_feat['num_chs'] | |
prev_feat = stem_feat | |
stages = [] | |
for stage_idx, stage_block_cfgs in enumerate(block_cfgs): | |
stride = stage_block_cfgs[0].s | |
if stride != 1 and prev_feat: | |
feature_info.append(prev_feat) | |
if net_stride >= output_stride and stride > 1: | |
dilation *= stride | |
stride = 1 | |
net_stride *= stride | |
first_dilation = 1 if dilation in (1, 2) else 2 | |
blocks = [] | |
for block_idx, block_cfg in enumerate(stage_block_cfgs): | |
out_chs = make_divisible(block_cfg.c * cfg.width_factor) | |
group_size = block_cfg.gs | |
if isinstance(group_size, Callable): | |
group_size = group_size(out_chs, block_idx) | |
block_kwargs = dict( # Blocks used in this model must accept these arguments | |
in_chs=prev_chs, | |
out_chs=out_chs, | |
stride=stride if block_idx == 0 else 1, | |
dilation=(first_dilation, dilation), | |
group_size=group_size, | |
bottle_ratio=block_cfg.br, | |
downsample=cfg.downsample, | |
drop_path_rate=dpr[stage_idx][block_idx], | |
layers=layers, | |
) | |
if block_cfg.type in ('self_attn',): | |
# add feat_size arg for blocks that support/need it | |
block_kwargs['feat_size'] = feat_size | |
block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg) | |
blocks += [create_block(block_cfg.type, **block_kwargs)] | |
first_dilation = dilation | |
prev_chs = out_chs | |
if stride > 1 and block_idx == 0: | |
feat_size = reduce_feat_size(feat_size, stride) | |
stages += [nn.Sequential(*blocks)] | |
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') | |
feature_info.append(prev_feat) | |
return nn.Sequential(*stages), feature_info | |
def get_layer_fns(cfg: ByoModelCfg): | |
act = get_act_layer(cfg.act_layer) | |
norm_act = get_norm_act_layer(norm_layer=cfg.norm_layer, act_layer=act) | |
conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act) | |
attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None | |
self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None | |
layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn) | |
return layer_fn | |
class ByobNet(nn.Module): | |
""" 'Bring-your-own-blocks' Net | |
A flexible network backbone that allows building model stem + blocks via | |
dataclass cfg definition w/ factory functions for module instantiation. | |
Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act). | |
""" | |
def __init__( | |
self, cfg: ByoModelCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, | |
zero_init_last=True, img_size=None, drop_rate=0., drop_path_rate=0.): | |
super().__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.grad_checkpointing = False | |
layers = get_layer_fns(cfg) | |
if cfg.fixed_input_size: | |
assert img_size is not None, 'img_size argument is required for fixed input size model' | |
feat_size = to_2tuple(img_size) if img_size is not None else None | |
self.feature_info = [] | |
stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor)) | |
self.stem, stem_feat = create_byob_stem(in_chans, stem_chs, cfg.stem_type, cfg.stem_pool, layers=layers) | |
self.feature_info.extend(stem_feat[:-1]) | |
feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction']) | |
self.stages, stage_feat = create_byob_stages( | |
cfg, drop_path_rate, output_stride, stem_feat[-1], layers=layers, feat_size=feat_size) | |
self.feature_info.extend(stage_feat[:-1]) | |
prev_chs = stage_feat[-1]['num_chs'] | |
if cfg.num_features: | |
self.num_features = int(round(cfg.width_factor * cfg.num_features)) | |
self.final_conv = layers.conv_norm_act(prev_chs, self.num_features, 1) | |
else: | |
self.num_features = prev_chs | |
self.final_conv = nn.Identity() | |
self.feature_info += [ | |
dict(num_chs=self.num_features, reduction=stage_feat[-1]['reduction'], module='final_conv')] | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
# init weights | |
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', | |
blocks=[ | |
(r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None), | |
(r'^final_conv', (99999,)) | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
def forward_features(self, x): | |
x = self.stem(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.stages, x) | |
else: | |
x = self.stages(x) | |
x = self.final_conv(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=pre_logits) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _init_weights(module, name='', zero_init_last=False): | |
if isinstance(module, nn.Conv2d): | |
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels | |
fan_out //= module.groups | |
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, mean=0.0, std=0.01) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.BatchNorm2d): | |
nn.init.ones_(module.weight) | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, 'init_weights'): | |
module.init_weights(zero_init_last=zero_init_last) | |
def _create_byobnet(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ByobNet, variant, pretrained, | |
model_cfg=model_cfgs[variant], | |
feature_cfg=dict(flatten_sequential=True), | |
**kwargs) | |