Spaces:
Running
Running
""" ConViT Model | |
@article{d2021convit, | |
title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases}, | |
author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent}, | |
journal={arXiv preprint arXiv:2103.10697}, | |
year={2021} | |
} | |
Paper link: https://arxiv.org/abs/2103.10697 | |
Original code: https://github.com/facebookresearch/convit, original copyright below | |
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman | |
""" | |
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the CC-by-NC license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
'''These modules are adapted from those of timm, see | |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
''' | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import DropPath, to_2tuple, trunc_normal_, PatchEmbed, Mlp | |
from .registry import register_model | |
from .vision_transformer_hybrid import HybridEmbed | |
from .fx_features import register_notrace_module | |
import torch | |
import torch.nn as nn | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# ConViT | |
'convit_tiny': _cfg( | |
url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"), | |
'convit_small': _cfg( | |
url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"), | |
'convit_base': _cfg( | |
url="https://dl.fbaipublicfiles.com/convit/convit_base.pth") | |
} | |
# reason: FX can't symbolically trace control flow in forward method | |
class GPSA(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., locality_strength=1.): | |
super().__init__() | |
self.num_heads = num_heads | |
self.dim = dim | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.locality_strength = locality_strength | |
self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.v = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.pos_proj = nn.Linear(3, num_heads) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.gating_param = nn.Parameter(torch.ones(self.num_heads)) | |
self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None | |
def forward(self, x): | |
B, N, C = x.shape | |
if self.rel_indices is None or self.rel_indices.shape[1] != N: | |
self.rel_indices = self.get_rel_indices(N) | |
attn = self.get_attention(x) | |
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def get_attention(self, x): | |
B, N, C = x.shape | |
qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k = qk[0], qk[1] | |
pos_score = self.rel_indices.expand(B, -1, -1, -1) | |
pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2) | |
patch_score = (q @ k.transpose(-2, -1)) * self.scale | |
patch_score = patch_score.softmax(dim=-1) | |
pos_score = pos_score.softmax(dim=-1) | |
gating = self.gating_param.view(1, -1, 1, 1) | |
attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score | |
attn /= attn.sum(dim=-1).unsqueeze(-1) | |
attn = self.attn_drop(attn) | |
return attn | |
def get_attention_map(self, x, return_map=False): | |
attn_map = self.get_attention(x).mean(0) # average over batch | |
distances = self.rel_indices.squeeze()[:, :, -1] ** .5 | |
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0) | |
if return_map: | |
return dist, attn_map | |
else: | |
return dist | |
def local_init(self): | |
self.v.weight.data.copy_(torch.eye(self.dim)) | |
locality_distance = 1 # max(1,1/locality_strength**.5) | |
kernel_size = int(self.num_heads ** .5) | |
center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2 | |
for h1 in range(kernel_size): | |
for h2 in range(kernel_size): | |
position = h1 + kernel_size * h2 | |
self.pos_proj.weight.data[position, 2] = -1 | |
self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance | |
self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance | |
self.pos_proj.weight.data *= self.locality_strength | |
def get_rel_indices(self, num_patches: int) -> torch.Tensor: | |
img_size = int(num_patches ** .5) | |
rel_indices = torch.zeros(1, num_patches, num_patches, 3) | |
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) | |
indx = ind.repeat(img_size, img_size) | |
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) | |
indd = indx ** 2 + indy ** 2 | |
rel_indices[:, :, :, 2] = indd.unsqueeze(0) | |
rel_indices[:, :, :, 1] = indy.unsqueeze(0) | |
rel_indices[:, :, :, 0] = indx.unsqueeze(0) | |
device = self.qk.weight.device | |
return rel_indices.to(device) | |
class MHSA(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def get_attention_map(self, x, return_map=False): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
attn_map = (q @ k.transpose(-2, -1)) * self.scale | |
attn_map = attn_map.softmax(dim=-1).mean(0) | |
img_size = int(N ** .5) | |
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) | |
indx = ind.repeat(img_size, img_size) | |
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) | |
indd = indx ** 2 + indy ** 2 | |
distances = indd ** .5 | |
distances = distances.to(x.device) | |
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N | |
if return_map: | |
return dist, attn_map | |
else: | |
return dist | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.use_gpsa = use_gpsa | |
if self.use_gpsa: | |
self.attn = GPSA( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, **kwargs) | |
else: | |
self.attn = MHSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class ConViT(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, | |
local_up_to_layer=3, locality_strength=1., use_pos_embed=True): | |
super().__init__() | |
assert global_pool in ('', 'avg', 'token') | |
embed_dim *= num_heads | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.local_up_to_layer = local_up_to_layer | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.locality_strength = locality_strength | |
self.use_pos_embed = use_pos_embed | |
if hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.num_patches = num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if self.use_pos_embed: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
trunc_normal_(self.pos_embed, std=.02) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
use_gpsa=True, | |
locality_strength=locality_strength) | |
if i < local_up_to_layer else | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
use_gpsa=False) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Classifier head | |
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
for n, m in self.named_modules(): | |
if hasattr(m, 'local_init'): | |
m.local_init() | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ('', 'token', 'avg') | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
if self.use_pos_embed: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) | |
for u, blk in enumerate(self.blocks): | |
if u == self.local_up_to_layer: | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = blk(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_convit(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
return build_model_with_cfg(ConViT, variant, pretrained, **kwargs) | |
def convit_tiny(pretrained=False, **kwargs): | |
model_args = dict( | |
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model = _create_convit(variant='convit_tiny', pretrained=pretrained, **model_args) | |
return model | |
def convit_small(pretrained=False, **kwargs): | |
model_args = dict( | |
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model = _create_convit(variant='convit_small', pretrained=pretrained, **model_args) | |
return model | |
def convit_base(pretrained=False, **kwargs): | |
model_args = dict( | |
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model = _create_convit(variant='convit_base', pretrained=pretrained, **model_args) | |
return model | |