Spaces:
Running
Running
""" DeiT - Data-efficient Image Transformers | |
DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below | |
paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 | |
paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118 | |
Modifications copyright 2021, Ross Wightman | |
""" | |
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
from functools import partial | |
import torch | |
from torch import nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from custom_timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .registry import register_model | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# deit models (FB weights) | |
'deit_tiny_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), | |
'deit_small_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), | |
'deit_base_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), | |
'deit_base_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit_tiny_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', | |
classifier=('head', 'head_dist')), | |
'deit_small_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', | |
classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', | |
classifier=('head', 'head_dist')), | |
'deit_base_distilled_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, | |
classifier=('head', 'head_dist')), | |
'deit3_small_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), | |
'deit3_small_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_medium_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), | |
'deit3_base_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), | |
'deit3_base_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_large_patch16_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), | |
'deit3_large_patch16_384': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_huge_patch14_224': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), | |
'deit3_small_patch16_224_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', | |
crop_pct=1.0), | |
'deit3_small_patch16_384_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_medium_patch16_224_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', | |
crop_pct=1.0), | |
'deit3_base_patch16_224_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', | |
crop_pct=1.0), | |
'deit3_base_patch16_384_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_large_patch16_224_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', | |
crop_pct=1.0), | |
'deit3_large_patch16_384_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'deit3_huge_patch14_224_in21ft1k': _cfg( | |
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', | |
crop_pct=1.0), | |
} | |
class VisionTransformerDistilled(VisionTransformer): | |
""" Vision Transformer w/ Distillation Token and Head | |
Distillation token & head support for `DeiT: Data-efficient Image Transformers` | |
- https://arxiv.org/abs/2012.12877 | |
""" | |
def __init__(self, *args, **kwargs): | |
weight_init = kwargs.pop('weight_init', '') | |
super().__init__(*args, **kwargs, weight_init='skip') | |
assert self.global_pool in ('token',) | |
self.num_prefix_tokens = 2 | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() | |
self.distilled_training = False # must set this True to train w/ distillation token | |
self.init_weights(weight_init) | |
def init_weights(self, mode=''): | |
trunc_normal_(self.dist_token, std=.02) | |
super().init_weights(mode=mode) | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^cls_token|pos_embed|patch_embed|dist_token', | |
blocks=[ | |
(r'^blocks\.(\d+)', None), | |
(r'^norm', (99999,))] # final norm w/ last block | |
) | |
def get_classifier(self): | |
return self.head, self.head_dist | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def set_distilled_training(self, enable=True): | |
self.distilled_training = enable | |
def forward_features(self, x) -> torch.Tensor: | |
x = self.patch_embed(x) | |
x = torch.cat(( | |
self.cls_token.expand(x.shape[0], -1, -1), | |
self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.pos_drop(x + self.pos_embed) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: | |
if pre_logits: | |
return (x[:, 0] + x[:, 1]) / 2 | |
x, x_dist = self.head(x[:, 0]), self.head_dist(x[:, 1]) | |
if self.distilled_training and self.training and not torch.jit.is_scripting(): | |
# only return separate classification predictions when training in distilled mode | |
return x, x_dist | |
else: | |
# during standard train / finetune, inference average the classifier predictions | |
return (x + x_dist) / 2 | |
def _create_deit(variant, pretrained=False, distilled=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model_cls = VisionTransformerDistilled if distilled else VisionTransformer | |
model = build_model_with_cfg( | |
model_cls, variant, pretrained, | |
pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), | |
**kwargs) | |
return model | |
def deit_tiny_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_small_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_base_patch16_224(pretrained=False, **kwargs): | |
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_base_patch16_384(pretrained=False, **kwargs): | |
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) | |
model = _create_deit( | |
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_small_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) | |
model = _create_deit( | |
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_base_distilled_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_deit( | |
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit_base_distilled_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = _create_deit( | |
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) | |
return model | |
def deit3_small_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_small_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_medium_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_base_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_base_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_large_patch16_224(pretrained=False, **kwargs): | |
""" DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_large_patch16_384(pretrained=False, **kwargs): | |
""" DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_huge_patch14_224(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_small_patch16_224_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_small_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_small_patch16_384_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_small_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_medium_patch16_224_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). | |
ImageNet-1k weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_medium_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_base_patch16_224_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_base_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_base_patch16_384_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_base_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_large_patch16_224_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_large_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_large_patch16_384_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_large_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |
def deit3_huge_patch14_224_in21ft1k(pretrained=False, **kwargs): | |
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). | |
ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. | |
""" | |
model_kwargs = dict( | |
patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) | |
model = _create_deit('deit3_huge_patch14_224_in21ft1k', pretrained=pretrained, **model_kwargs) | |
return model | |