Spaces:
Running
Running
""" PyTorch implementation of DualPathNetworks | |
Based on original MXNet implementation https://github.com/cypw/DPNs with | |
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. | |
This implementation is compatible with the pretrained weights from cypw's MXNet implementation. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier | |
from .registry import register_model | |
__all__ = ['DPN'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD, | |
'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier', | |
**kwargs | |
} | |
default_cfgs = { | |
'dpn68': _cfg( | |
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth'), | |
'dpn68b': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
'dpn92': _cfg( | |
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth'), | |
'dpn98': _cfg( | |
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth'), | |
'dpn131': _cfg( | |
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth'), | |
'dpn107': _cfg( | |
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth') | |
} | |
class CatBnAct(nn.Module): | |
def __init__(self, in_chs, norm_layer=BatchNormAct2d): | |
super(CatBnAct, self).__init__() | |
self.bn = norm_layer(in_chs, eps=0.001) | |
# noqa: F811 | |
def forward(self, x): | |
# type: (Tuple[torch.Tensor, torch.Tensor]) -> (torch.Tensor) | |
pass | |
# noqa: F811 | |
def forward(self, x): | |
# type: (torch.Tensor) -> (torch.Tensor) | |
pass | |
def forward(self, x): | |
if isinstance(x, tuple): | |
x = torch.cat(x, dim=1) | |
return self.bn(x) | |
class BnActConv2d(nn.Module): | |
def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d): | |
super(BnActConv2d, self).__init__() | |
self.bn = norm_layer(in_chs, eps=0.001) | |
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups) | |
def forward(self, x): | |
return self.conv(self.bn(x)) | |
class DualPathBlock(nn.Module): | |
def __init__( | |
self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False): | |
super(DualPathBlock, self).__init__() | |
self.num_1x1_c = num_1x1_c | |
self.inc = inc | |
self.b = b | |
if block_type == 'proj': | |
self.key_stride = 1 | |
self.has_proj = True | |
elif block_type == 'down': | |
self.key_stride = 2 | |
self.has_proj = True | |
else: | |
assert block_type == 'normal' | |
self.key_stride = 1 | |
self.has_proj = False | |
self.c1x1_w_s1 = None | |
self.c1x1_w_s2 = None | |
if self.has_proj: | |
# Using different member names here to allow easier parameter key matching for conversion | |
if self.key_stride == 2: | |
self.c1x1_w_s2 = BnActConv2d( | |
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2) | |
else: | |
self.c1x1_w_s1 = BnActConv2d( | |
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1) | |
self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1) | |
self.c3x3_b = BnActConv2d( | |
in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups) | |
if b: | |
self.c1x1_c = CatBnAct(in_chs=num_3x3_b) | |
self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1) | |
self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1) | |
else: | |
self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1) | |
self.c1x1_c1 = None | |
self.c1x1_c2 = None | |
# noqa: F811 | |
def forward(self, x): | |
# type: (Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor] | |
pass | |
# noqa: F811 | |
def forward(self, x): | |
# type: (torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] | |
pass | |
def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]: | |
if isinstance(x, tuple): | |
x_in = torch.cat(x, dim=1) | |
else: | |
x_in = x | |
if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None: | |
# self.has_proj == False, torchscript requires condition on module == None | |
x_s1 = x[0] | |
x_s2 = x[1] | |
else: | |
# self.has_proj == True | |
if self.c1x1_w_s1 is not None: | |
# self.key_stride = 1 | |
x_s = self.c1x1_w_s1(x_in) | |
else: | |
# self.key_stride = 2 | |
x_s = self.c1x1_w_s2(x_in) | |
x_s1 = x_s[:, :self.num_1x1_c, :, :] | |
x_s2 = x_s[:, self.num_1x1_c:, :, :] | |
x_in = self.c1x1_a(x_in) | |
x_in = self.c3x3_b(x_in) | |
x_in = self.c1x1_c(x_in) | |
if self.c1x1_c1 is not None: | |
# self.b == True, using None check for torchscript compat | |
out1 = self.c1x1_c1(x_in) | |
out2 = self.c1x1_c2(x_in) | |
else: | |
out1 = x_in[:, :self.num_1x1_c, :, :] | |
out2 = x_in[:, self.num_1x1_c:, :, :] | |
resid = x_s1 + out1 | |
dense = torch.cat([x_s2, out2], dim=1) | |
return resid, dense | |
class DPN(nn.Module): | |
def __init__( | |
self, small=False, num_init_features=64, k_r=96, groups=32, global_pool='avg', | |
b=False, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), output_stride=32, | |
num_classes=1000, in_chans=3, drop_rate=0., fc_act_layer=nn.ELU): | |
super(DPN, self).__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.b = b | |
assert output_stride == 32 # FIXME look into dilation support | |
norm_layer = partial(BatchNormAct2d, eps=.001) | |
fc_norm_layer = partial(BatchNormAct2d, eps=.001, act_layer=fc_act_layer, inplace=False) | |
bw_factor = 1 if small else 4 | |
blocks = OrderedDict() | |
# conv1 | |
blocks['conv1_1'] = ConvNormAct( | |
in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer) | |
blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')] | |
# conv2 | |
bw = 64 * bw_factor | |
inc = inc_sec[0] | |
r = (k_r * bw) // (64 * bw_factor) | |
blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b) | |
in_chs = bw + 3 * inc | |
for i in range(2, k_sec[0] + 1): | |
blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) | |
in_chs += inc | |
self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')] | |
# conv3 | |
bw = 128 * bw_factor | |
inc = inc_sec[1] | |
r = (k_r * bw) // (64 * bw_factor) | |
blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) | |
in_chs = bw + 3 * inc | |
for i in range(2, k_sec[1] + 1): | |
blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) | |
in_chs += inc | |
self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')] | |
# conv4 | |
bw = 256 * bw_factor | |
inc = inc_sec[2] | |
r = (k_r * bw) // (64 * bw_factor) | |
blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) | |
in_chs = bw + 3 * inc | |
for i in range(2, k_sec[2] + 1): | |
blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) | |
in_chs += inc | |
self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')] | |
# conv5 | |
bw = 512 * bw_factor | |
inc = inc_sec[3] | |
r = (k_r * bw) // (64 * bw_factor) | |
blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) | |
in_chs = bw + 3 * inc | |
for i in range(2, k_sec[3] + 1): | |
blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) | |
in_chs += inc | |
self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')] | |
blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer) | |
self.num_features = in_chs | |
self.features = nn.Sequential(blocks) | |
# Using 1x1 conv for the FC layer to allow the extra pooling scheme | |
self.global_pool, self.classifier = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^features\.conv1', | |
blocks=[ | |
(r'^features\.conv(\d+)' if coarse else r'^features\.conv(\d+)_(\d+)', None), | |
(r'^features\.conv5_bn_ac', (99999,)) | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.classifier | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.classifier = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() | |
def forward_features(self, x): | |
return self.features(x) | |
def forward_head(self, x, pre_logits: bool = False): | |
x = self.global_pool(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
if pre_logits: | |
return x.flatten(1) | |
else: | |
x = self.classifier(x) | |
return self.flatten(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_dpn(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
DPN, variant, pretrained, | |
feature_cfg=dict(feature_concat=True, flatten_sequential=True), | |
**kwargs) | |
def dpn68(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
small=True, num_init_features=10, k_r=128, groups=32, | |
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), **kwargs) | |
return _create_dpn('dpn68', pretrained=pretrained, **model_kwargs) | |
def dpn68b(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
small=True, num_init_features=10, k_r=128, groups=32, | |
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), **kwargs) | |
return _create_dpn('dpn68b', pretrained=pretrained, **model_kwargs) | |
def dpn92(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
num_init_features=64, k_r=96, groups=32, | |
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), **kwargs) | |
return _create_dpn('dpn92', pretrained=pretrained, **model_kwargs) | |
def dpn98(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
num_init_features=96, k_r=160, groups=40, | |
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128), **kwargs) | |
return _create_dpn('dpn98', pretrained=pretrained, **model_kwargs) | |
def dpn131(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
num_init_features=128, k_r=160, groups=40, | |
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128), **kwargs) | |
return _create_dpn('dpn131', pretrained=pretrained, **model_kwargs) | |
def dpn107(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
num_init_features=128, k_r=200, groups=50, | |
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128), **kwargs) | |
return _create_dpn('dpn107', pretrained=pretrained, **model_kwargs) | |