Spaces:
Running
Running
""" EdgeNeXt | |
Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications` | |
- https://arxiv.org/abs/2206.10589 | |
Original code and weights from https://github.com/mmaaz60/EdgeNeXt | |
Modifications and additions for timm by / Copyright 2022, Ross Wightman | |
""" | |
import math | |
import torch | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Tuple | |
from torch import nn | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .fx_features import register_notrace_module | |
from .layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, SelectAdaptivePool2d, create_conv2d | |
from .helpers import named_apply, build_model_with_cfg, checkpoint_seq | |
from .registry import register_model | |
__all__ = ['EdgeNeXt'] # model_registry will add each entrypoint fn to this | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), | |
'crop_pct': 0.9, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.0', 'classifier': 'head.fc', | |
**kwargs | |
} | |
default_cfgs = dict( | |
edgenext_xx_small=_cfg( | |
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_xx_small.pth", | |
test_input_size=(3, 288, 288), test_crop_pct=1.0), | |
edgenext_x_small=_cfg( | |
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_x_small.pth", | |
test_input_size=(3, 288, 288), test_crop_pct=1.0), | |
# edgenext_small=_cfg( | |
# url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_small.pth"), | |
edgenext_small=_cfg( # USI weights | |
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.1/edgenext_small_usi.pth", | |
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, | |
), | |
# edgenext_base=_cfg( | |
# url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.2/edgenext_base_usi.pth"), | |
edgenext_base=_cfg( # USI weights | |
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.2/edgenext_base_usi.pth", | |
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, | |
), | |
edgenext_small_rw=_cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/edgenext_small_rw-sw-b00041bb.pth', | |
test_input_size=(3, 320, 320), test_crop_pct=1.0, | |
), | |
) | |
# reason: FX can't symbolically trace torch.arange in forward method | |
class PositionalEncodingFourier(nn.Module): | |
def __init__(self, hidden_dim=32, dim=768, temperature=10000): | |
super().__init__() | |
self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) | |
self.scale = 2 * math.pi | |
self.temperature = temperature | |
self.hidden_dim = hidden_dim | |
self.dim = dim | |
def forward(self, shape: Tuple[int, int, int]): | |
inv_mask = ~torch.zeros(shape).to(device=self.token_projection.weight.device, dtype=torch.bool) | |
y_embed = inv_mask.cumsum(1, dtype=torch.float32) | |
x_embed = inv_mask.cumsum(2, dtype=torch.float32) | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=inv_mask.device) | |
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), | |
pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), | |
pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
pos = self.token_projection(pos) | |
return pos | |
class ConvBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out=None, | |
kernel_size=7, | |
stride=1, | |
conv_bias=True, | |
expand_ratio=4, | |
ls_init_value=1e-6, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU, drop_path=0., | |
): | |
super().__init__() | |
dim_out = dim_out or dim | |
self.shortcut_after_dw = stride > 1 or dim != dim_out | |
self.conv_dw = create_conv2d( | |
dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) | |
self.norm = norm_layer(dim_out) | |
self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) | |
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv_dw(x) | |
if self.shortcut_after_dw: | |
shortcut = x | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.mlp(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = shortcut + self.drop_path(x) | |
return x | |
class CrossCovarianceAttn(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
attn_drop=0., | |
proj_drop=0. | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) | |
q, k, v = qkv.unbind(0) | |
# NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L --> C x C attn map | |
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def no_weight_decay(self): | |
return {'temperature'} | |
class SplitTransposeBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_scales=1, | |
num_heads=8, | |
expand_ratio=4, | |
use_pos_emb=True, | |
conv_bias=True, | |
qkv_bias=True, | |
ls_init_value=1e-6, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU, | |
drop_path=0., | |
attn_drop=0., | |
proj_drop=0. | |
): | |
super().__init__() | |
width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) | |
self.width = width | |
self.num_scales = max(1, num_scales - 1) | |
convs = [] | |
for i in range(self.num_scales): | |
convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) | |
self.convs = nn.ModuleList(convs) | |
self.pos_embd = None | |
if use_pos_emb: | |
self.pos_embd = PositionalEncodingFourier(dim=dim) | |
self.norm_xca = norm_layer(dim) | |
self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None | |
self.xca = CrossCovarianceAttn( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) | |
self.norm = norm_layer(dim, eps=1e-6) | |
self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) | |
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
# scales code re-written for torchscript as per my res2net fixes -rw | |
# NOTE torch.split(x, self.width, 1) causing issues with ONNX export | |
spx = x.chunk(len(self.convs) + 1, dim=1) | |
spo = [] | |
sp = spx[0] | |
for i, conv in enumerate(self.convs): | |
if i > 0: | |
sp = sp + spx[i] | |
sp = conv(sp) | |
spo.append(sp) | |
spo.append(spx[-1]) | |
x = torch.cat(spo, 1) | |
# XCA | |
B, C, H, W = x.shape | |
x = x.reshape(B, C, H * W).permute(0, 2, 1) | |
if self.pos_embd is not None: | |
pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) | |
x = x + pos_encoding | |
x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) | |
x = x.reshape(B, H, W, C) | |
# Inverted Bottleneck | |
x = self.norm(x) | |
x = self.mlp(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = shortcut + self.drop_path(x) | |
return x | |
class EdgeNeXtStage(nn.Module): | |
def __init__( | |
self, | |
in_chs, | |
out_chs, | |
stride=2, | |
depth=2, | |
num_global_blocks=1, | |
num_heads=4, | |
scales=2, | |
kernel_size=7, | |
expand_ratio=4, | |
use_pos_emb=False, | |
downsample_block=False, | |
conv_bias=True, | |
ls_init_value=1.0, | |
drop_path_rates=None, | |
norm_layer=LayerNorm2d, | |
norm_layer_cl=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU | |
): | |
super().__init__() | |
self.grad_checkpointing = False | |
if downsample_block or stride == 1: | |
self.downsample = nn.Identity() | |
else: | |
self.downsample = nn.Sequential( | |
norm_layer(in_chs), | |
nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias) | |
) | |
in_chs = out_chs | |
stage_blocks = [] | |
for i in range(depth): | |
if i < depth - num_global_blocks: | |
stage_blocks.append( | |
ConvBlock( | |
dim=in_chs, | |
dim_out=out_chs, | |
stride=stride if downsample_block and i == 0 else 1, | |
conv_bias=conv_bias, | |
kernel_size=kernel_size, | |
expand_ratio=expand_ratio, | |
ls_init_value=ls_init_value, | |
drop_path=drop_path_rates[i], | |
norm_layer=norm_layer_cl, | |
act_layer=act_layer, | |
) | |
) | |
else: | |
stage_blocks.append( | |
SplitTransposeBlock( | |
dim=in_chs, | |
num_scales=scales, | |
num_heads=num_heads, | |
expand_ratio=expand_ratio, | |
use_pos_emb=use_pos_emb, | |
conv_bias=conv_bias, | |
ls_init_value=ls_init_value, | |
drop_path=drop_path_rates[i], | |
norm_layer=norm_layer_cl, | |
act_layer=act_layer, | |
) | |
) | |
in_chs = out_chs | |
self.blocks = nn.Sequential(*stage_blocks) | |
def forward(self, x): | |
x = self.downsample(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
return x | |
class EdgeNeXt(nn.Module): | |
def __init__( | |
self, | |
in_chans=3, | |
num_classes=1000, | |
global_pool='avg', | |
dims=(24, 48, 88, 168), | |
depths=(3, 3, 9, 3), | |
global_block_counts=(0, 1, 1, 1), | |
kernel_sizes=(3, 5, 7, 9), | |
heads=(8, 8, 8, 8), | |
d2_scales=(2, 2, 3, 4), | |
use_pos_emb=(False, True, False, False), | |
ls_init_value=1e-6, | |
head_init_scale=1., | |
expand_ratio=4, | |
downsample_block=False, | |
conv_bias=True, | |
stem_type='patch', | |
head_norm_first=False, | |
act_layer=nn.GELU, | |
drop_path_rate=0., | |
drop_rate=0., | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.drop_rate = drop_rate | |
norm_layer = partial(LayerNorm2d, eps=1e-6) | |
norm_layer_cl = partial(nn.LayerNorm, eps=1e-6) | |
self.feature_info = [] | |
assert stem_type in ('patch', 'overlap') | |
if stem_type == 'patch': | |
self.stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), | |
norm_layer(dims[0]), | |
) | |
else: | |
self.stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), | |
norm_layer(dims[0]), | |
) | |
curr_stride = 4 | |
stages = [] | |
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] | |
in_chs = dims[0] | |
for i in range(4): | |
stride = 2 if curr_stride == 2 or i > 0 else 1 | |
# FIXME support dilation / output_stride | |
curr_stride *= stride | |
stages.append(EdgeNeXtStage( | |
in_chs=in_chs, | |
out_chs=dims[i], | |
stride=stride, | |
depth=depths[i], | |
num_global_blocks=global_block_counts[i], | |
num_heads=heads[i], | |
drop_path_rates=dp_rates[i], | |
scales=d2_scales[i], | |
expand_ratio=expand_ratio, | |
kernel_size=kernel_sizes[i], | |
use_pos_emb=use_pos_emb[i], | |
ls_init_value=ls_init_value, | |
downsample_block=downsample_block, | |
conv_bias=conv_bias, | |
norm_layer=norm_layer, | |
norm_layer_cl=norm_layer_cl, | |
act_layer=act_layer, | |
)) | |
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 | |
in_chs = dims[i] | |
self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] | |
self.stages = nn.Sequential(*stages) | |
self.num_features = dims[-1] | |
self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity() | |
self.head = nn.Sequential(OrderedDict([ | |
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), | |
('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)), | |
('flatten', nn.Flatten(1) if global_pool else nn.Identity()), | |
('drop', nn.Dropout(self.drop_rate)), | |
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())])) | |
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^stem', | |
blocks=r'^stages\.(\d+)' if coarse else [ | |
(r'^stages\.(\d+)\.downsample', (0,)), # blocks | |
(r'^stages\.(\d+)\.blocks\.(\d+)', None), | |
(r'^norm_pre', (99999,)) | |
] | |
) | |
def set_grad_checkpointing(self, enable=True): | |
for s in self.stages: | |
s.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes=0, global_pool=None): | |
if global_pool is not None: | |
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity() | |
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.stem(x) | |
x = self.stages(x) | |
x = self.norm_pre(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
# NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :( | |
x = self.head.global_pool(x) | |
x = self.head.norm(x) | |
x = self.head.flatten(x) | |
x = self.head.drop(x) | |
return x if pre_logits else self.head.fc(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _init_weights(module, name=None, head_init_scale=1.0): | |
if isinstance(module, nn.Conv2d): | |
trunc_normal_tf_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Linear): | |
trunc_normal_tf_(module.weight, std=.02) | |
nn.init.zeros_(module.bias) | |
if name and 'head.' in name: | |
module.weight.data.mul_(head_init_scale) | |
module.bias.data.mul_(head_init_scale) | |
def checkpoint_filter_fn(state_dict, model): | |
""" Remap FB checkpoints -> timm """ | |
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: | |
return state_dict # non-FB checkpoint | |
# models were released as train checkpoints... :/ | |
if 'model_ema' in state_dict: | |
state_dict = state_dict['model_ema'] | |
elif 'model' in state_dict: | |
state_dict = state_dict['model'] | |
elif 'state_dict' in state_dict: | |
state_dict = state_dict['state_dict'] | |
out_dict = {} | |
import re | |
for k, v in state_dict.items(): | |
k = k.replace('downsample_layers.0.', 'stem.') | |
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) | |
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) | |
k = k.replace('dwconv', 'conv_dw') | |
k = k.replace('pwconv', 'mlp.fc') | |
k = k.replace('head.', 'head.fc.') | |
if k.startswith('norm.'): | |
k = k.replace('norm', 'head.norm') | |
if v.ndim == 2 and 'head' not in k: | |
model_shape = model.state_dict()[k].shape | |
v = v.reshape(model_shape) | |
out_dict[k] = v | |
return out_dict | |
def _create_edgenext(variant, pretrained=False, **kwargs): | |
model = build_model_with_cfg( | |
EdgeNeXt, variant, pretrained, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), | |
**kwargs) | |
return model | |
def edgenext_xx_small(pretrained=False, **kwargs): | |
# 1.33M & 260.58M @ 256 resolution | |
# 71.23% Top-1 accuracy | |
# No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler | |
# Jetson FPS=51.66 versus 47.67 for MobileViT_XXS | |
# For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS | |
model_kwargs = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4), **kwargs) | |
return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **model_kwargs) | |
def edgenext_x_small(pretrained=False, **kwargs): | |
# 2.34M & 538.0M @ 256 resolution | |
# 75.00% Top-1 accuracy | |
# No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler | |
# Jetson FPS=31.61 versus 28.49 for MobileViT_XS | |
# For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS | |
model_kwargs = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4), **kwargs) | |
return _create_edgenext('edgenext_x_small', pretrained=pretrained, **model_kwargs) | |
def edgenext_small(pretrained=False, **kwargs): | |
# 5.59M & 1260.59M @ 256 resolution | |
# 79.43% Top-1 accuracy | |
# AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler | |
# Jetson FPS=20.47 versus 18.86 for MobileViT_S | |
# For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S | |
model_kwargs = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304), **kwargs) | |
return _create_edgenext('edgenext_small', pretrained=pretrained, **model_kwargs) | |
def edgenext_base(pretrained=False, **kwargs): | |
# 18.51M & 3840.93M @ 256 resolution | |
# 82.5% (normal) 83.7% (USI) Top-1 accuracy | |
# AA=True, Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler | |
# Jetson FPS=xx.xx versus xx.xx for MobileViT_S | |
# For A100: FPS @ BS=1: xxx.xx & @ BS=256: xxxx.xx | |
model_kwargs = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584], **kwargs) | |
return _create_edgenext('edgenext_base', pretrained=pretrained, **model_kwargs) | |
def edgenext_small_rw(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), | |
downsample_block=True, conv_bias=False, stem_type='overlap', **kwargs) | |
return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **model_kwargs) | |