Spaces:
Running
Running
""" | |
An implementation of GhostNet Model as defined in: | |
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 | |
The train script of the model is similar to that of MobileNetV3 | |
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch | |
""" | |
import math | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .layers import SelectAdaptivePool2d, Linear, make_divisible | |
from .efficientnet_blocks import SqueezeExcite, ConvBnAct | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .registry import register_model | |
__all__ = ['GhostNet'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'conv_stem', 'classifier': 'classifier', | |
**kwargs | |
} | |
default_cfgs = { | |
'ghostnet_050': _cfg(url=''), | |
'ghostnet_100': _cfg( | |
url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'), | |
'ghostnet_130': _cfg(url=''), | |
} | |
_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) | |
class GhostModule(nn.Module): | |
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): | |
super(GhostModule, self).__init__() | |
self.oup = oup | |
init_channels = math.ceil(oup / ratio) | |
new_channels = init_channels * (ratio - 1) | |
self.primary_conv = nn.Sequential( | |
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), | |
nn.BatchNorm2d(init_channels), | |
nn.ReLU(inplace=True) if relu else nn.Sequential(), | |
) | |
self.cheap_operation = nn.Sequential( | |
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), | |
nn.BatchNorm2d(new_channels), | |
nn.ReLU(inplace=True) if relu else nn.Sequential(), | |
) | |
def forward(self, x): | |
x1 = self.primary_conv(x) | |
x2 = self.cheap_operation(x1) | |
out = torch.cat([x1, x2], dim=1) | |
return out[:, :self.oup, :, :] | |
class GhostBottleneck(nn.Module): | |
""" Ghost bottleneck w/ optional SE""" | |
def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, | |
stride=1, act_layer=nn.ReLU, se_ratio=0.): | |
super(GhostBottleneck, self).__init__() | |
has_se = se_ratio is not None and se_ratio > 0. | |
self.stride = stride | |
# Point-wise expansion | |
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) | |
# Depth-wise convolution | |
if self.stride > 1: | |
self.conv_dw = nn.Conv2d( | |
mid_chs, mid_chs, dw_kernel_size, stride=stride, | |
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) | |
self.bn_dw = nn.BatchNorm2d(mid_chs) | |
else: | |
self.conv_dw = None | |
self.bn_dw = None | |
# Squeeze-and-excitation | |
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None | |
# Point-wise linear projection | |
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) | |
# shortcut | |
if in_chs == out_chs and self.stride == 1: | |
self.shortcut = nn.Sequential() | |
else: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_chs, in_chs, dw_kernel_size, stride=stride, | |
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), | |
nn.BatchNorm2d(in_chs), | |
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), | |
nn.BatchNorm2d(out_chs), | |
) | |
def forward(self, x): | |
shortcut = x | |
# 1st ghost bottleneck | |
x = self.ghost1(x) | |
# Depth-wise convolution | |
if self.conv_dw is not None: | |
x = self.conv_dw(x) | |
x = self.bn_dw(x) | |
# Squeeze-and-excitation | |
if self.se is not None: | |
x = self.se(x) | |
# 2nd ghost bottleneck | |
x = self.ghost2(x) | |
x += self.shortcut(shortcut) | |
return x | |
class GhostNet(nn.Module): | |
def __init__( | |
self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2): | |
super(GhostNet, self).__init__() | |
# setting of inverted residual blocks | |
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' | |
self.cfgs = cfgs | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.grad_checkpointing = False | |
self.feature_info = [] | |
# building first layer | |
stem_chs = make_divisible(16 * width, 4) | |
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) | |
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) | |
self.bn1 = nn.BatchNorm2d(stem_chs) | |
self.act1 = nn.ReLU(inplace=True) | |
prev_chs = stem_chs | |
# building inverted residual blocks | |
stages = nn.ModuleList([]) | |
block = GhostBottleneck | |
stage_idx = 0 | |
net_stride = 2 | |
for cfg in self.cfgs: | |
layers = [] | |
s = 1 | |
for k, exp_size, c, se_ratio, s in cfg: | |
out_chs = make_divisible(c * width, 4) | |
mid_chs = make_divisible(exp_size * width, 4) | |
layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio)) | |
prev_chs = out_chs | |
if s > 1: | |
net_stride *= 2 | |
self.feature_info.append(dict( | |
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) | |
stages.append(nn.Sequential(*layers)) | |
stage_idx += 1 | |
out_chs = make_divisible(exp_size * width, 4) | |
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) | |
self.pool_dim = prev_chs = out_chs | |
self.blocks = nn.Sequential(*stages) | |
# building last several layers | |
self.num_features = out_chs = 1280 | |
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) | |
self.act2 = nn.ReLU(inplace=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() | |
# FIXME init | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^conv_stem|bn1', | |
blocks=[ | |
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), | |
(r'conv_head', (99999,)) | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.classifier | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
# cannot meaningfully change pooling of efficient head after creation | |
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
self.classifier = Linear(self.pool_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.conv_stem(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x, flatten=True) | |
else: | |
x = self.blocks(x) | |
return x | |
def forward_head(self, x): | |
x = self.global_pool(x) | |
x = self.conv_head(x) | |
x = self.act2(x) | |
x = self.flatten(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
x = self.classifier(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): | |
""" | |
Constructs a GhostNet model | |
""" | |
cfgs = [ | |
# k, t, c, SE, s | |
# stage1 | |
[[3, 16, 16, 0, 1]], | |
# stage2 | |
[[3, 48, 24, 0, 2]], | |
[[3, 72, 24, 0, 1]], | |
# stage3 | |
[[5, 72, 40, 0.25, 2]], | |
[[5, 120, 40, 0.25, 1]], | |
# stage4 | |
[[3, 240, 80, 0, 2]], | |
[[3, 200, 80, 0, 1], | |
[3, 184, 80, 0, 1], | |
[3, 184, 80, 0, 1], | |
[3, 480, 112, 0.25, 1], | |
[3, 672, 112, 0.25, 1] | |
], | |
# stage5 | |
[[5, 672, 160, 0.25, 2]], | |
[[5, 960, 160, 0, 1], | |
[5, 960, 160, 0.25, 1], | |
[5, 960, 160, 0, 1], | |
[5, 960, 160, 0.25, 1] | |
] | |
] | |
model_kwargs = dict( | |
cfgs=cfgs, | |
width=width, | |
**kwargs, | |
) | |
return build_model_with_cfg( | |
GhostNet, variant, pretrained, | |
feature_cfg=dict(flatten_sequential=True), | |
**model_kwargs) | |
def ghostnet_050(pretrained=False, **kwargs): | |
""" GhostNet-0.5x """ | |
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) | |
return model | |
def ghostnet_100(pretrained=False, **kwargs): | |
""" GhostNet-1.0x """ | |
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def ghostnet_130(pretrained=False, **kwargs): | |
""" GhostNet-1.3x """ | |
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) | |
return model | |