Spaces:
Running
Running
""" Model creation / weight loading / state_dict helpers | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import collections.abc | |
import logging | |
import math | |
import os | |
import re | |
from collections import OrderedDict, defaultdict | |
from copy import deepcopy | |
from itertools import chain | |
from typing import Any, Callable, Optional, Tuple, Dict, Union | |
import torch | |
import torch.nn as nn | |
from torch.hub import load_state_dict_from_url | |
from torch.utils.checkpoint import checkpoint | |
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet | |
from .fx_features import FeatureGraphNet | |
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf | |
from .layers import Conv2dSame, Linear, BatchNormAct2d | |
from .registry import get_pretrained_cfg | |
_logger = logging.getLogger(__name__) | |
# Global variables for rarely used pretrained checkpoint download progress and hash check. | |
# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle. | |
_DOWNLOAD_PROGRESS = False | |
_CHECK_HASH = False | |
def clean_state_dict(state_dict): | |
# 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training | |
cleaned_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] if k.startswith('module.') else k | |
cleaned_state_dict[name] = v | |
return cleaned_state_dict | |
def load_state_dict(checkpoint_path, use_ema=True): | |
if checkpoint_path and os.path.isfile(checkpoint_path): | |
checkpoint = torch.load(checkpoint_path, map_location='cpu') | |
state_dict_key = '' | |
if isinstance(checkpoint, dict): | |
if use_ema and checkpoint.get('state_dict_ema', None) is not None: | |
state_dict_key = 'state_dict_ema' | |
elif use_ema and checkpoint.get('model_ema', None) is not None: | |
state_dict_key = 'model_ema' | |
elif 'state_dict' in checkpoint: | |
state_dict_key = 'state_dict' | |
elif 'model' in checkpoint: | |
state_dict_key = 'model' | |
state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint) | |
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) | |
return state_dict | |
else: | |
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) | |
raise FileNotFoundError() | |
def load_checkpoint(model, checkpoint_path, use_ema=True, strict=True): | |
if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): | |
# numpy checkpoint, try to load via model specific load_pretrained fn | |
if hasattr(model, 'load_pretrained'): | |
model.load_pretrained(checkpoint_path) | |
else: | |
raise NotImplementedError('Model cannot load numpy checkpoint') | |
return | |
state_dict = load_state_dict(checkpoint_path, use_ema) | |
incompatible_keys = model.load_state_dict(state_dict, strict=strict) | |
return incompatible_keys | |
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True): | |
resume_epoch = None | |
if os.path.isfile(checkpoint_path): | |
checkpoint = torch.load(checkpoint_path, map_location='cpu') | |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
if log_info: | |
_logger.info('Restoring model state from checkpoint...') | |
state_dict = clean_state_dict(checkpoint['state_dict']) | |
model.load_state_dict(state_dict) | |
if optimizer is not None and 'optimizer' in checkpoint: | |
if log_info: | |
_logger.info('Restoring optimizer state from checkpoint...') | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: | |
if log_info: | |
_logger.info('Restoring AMP loss scaler state from checkpoint...') | |
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) | |
if 'epoch' in checkpoint: | |
resume_epoch = checkpoint['epoch'] | |
if 'version' in checkpoint and checkpoint['version'] > 1: | |
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save | |
if log_info: | |
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) | |
else: | |
model.load_state_dict(checkpoint) | |
if log_info: | |
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) | |
return resume_epoch | |
else: | |
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) | |
raise FileNotFoundError() | |
def _resolve_pretrained_source(pretrained_cfg): | |
cfg_source = pretrained_cfg.get('source', '') | |
pretrained_url = pretrained_cfg.get('url', None) | |
pretrained_file = pretrained_cfg.get('file', None) | |
hf_hub_id = pretrained_cfg.get('hf_hub_id', None) | |
# resolve where to load pretrained weights from | |
load_from = '' | |
pretrained_loc = '' | |
if cfg_source == 'hf-hub' and has_hf_hub(necessary=True): | |
# hf-hub specified as source via model identifier | |
load_from = 'hf-hub' | |
assert hf_hub_id | |
pretrained_loc = hf_hub_id | |
else: | |
# default source == timm or unspecified | |
if pretrained_file: | |
load_from = 'file' | |
pretrained_loc = pretrained_file | |
elif pretrained_url: | |
load_from = 'url' | |
pretrained_loc = pretrained_url | |
elif hf_hub_id and has_hf_hub(necessary=True): | |
# hf-hub available as alternate weight source in default_cfg | |
load_from = 'hf-hub' | |
pretrained_loc = hf_hub_id | |
if load_from == 'hf-hub' and 'hf_hub_filename' in pretrained_cfg: | |
# if a filename override is set, return tuple for location w/ (hub_id, filename) | |
pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename'] | |
return load_from, pretrained_loc | |
def set_pretrained_download_progress(enable=True): | |
""" Set download progress for pretrained weights on/off (globally). """ | |
global _DOWNLOAD_PROGRESS | |
_DOWNLOAD_PROGRESS = enable | |
def set_pretrained_check_hash(enable=True): | |
""" Set hash checking for pretrained weights on/off (globally). """ | |
global _CHECK_HASH | |
_CHECK_HASH = enable | |
def load_custom_pretrained( | |
model: nn.Module, | |
pretrained_cfg: Optional[Dict] = None, | |
load_fn: Optional[Callable] = None, | |
): | |
r"""Loads a custom (read non .pth) weight file | |
Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls | |
a passed in custom load fun, or the `load_pretrained` model member fn. | |
If the object is already present in `model_dir`, it's deserialized and returned. | |
The default value of `model_dir` is ``<hub_dir>/checkpoints`` where | |
`hub_dir` is the directory returned by :func:`~torch.hub.get_dir`. | |
Args: | |
model: The instantiated model to load weights into | |
pretrained_cfg (dict): Default pretrained model cfg | |
load_fn: An external stand alone fn that loads weights into provided model, otherwise a fn named | |
'laod_pretrained' on the model will be called if it exists | |
""" | |
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) or {} | |
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) | |
if not load_from: | |
_logger.warning("No pretrained weights exist for this model. Using random initialization.") | |
return | |
if load_from == 'hf-hub': # FIXME | |
_logger.warning("Hugging Face hub not currently supported for custom load pretrained models.") | |
elif load_from == 'url': | |
pretrained_loc = download_cached_file(pretrained_loc, check_hash=_CHECK_HASH, progress=_DOWNLOAD_PROGRESS) | |
if load_fn is not None: | |
load_fn(model, pretrained_loc) | |
elif hasattr(model, 'load_pretrained'): | |
model.load_pretrained(pretrained_loc) | |
else: | |
_logger.warning("Valid function to load pretrained weights is not available, using random initialization.") | |
def adapt_input_conv(in_chans, conv_weight): | |
conv_type = conv_weight.dtype | |
conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU | |
O, I, J, K = conv_weight.shape | |
if in_chans == 1: | |
if I > 3: | |
assert conv_weight.shape[1] % 3 == 0 | |
# For models with space2depth stems | |
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) | |
conv_weight = conv_weight.sum(dim=2, keepdim=False) | |
else: | |
conv_weight = conv_weight.sum(dim=1, keepdim=True) | |
elif in_chans != 3: | |
if I != 3: | |
raise NotImplementedError('Weight format not supported by conversion.') | |
else: | |
# NOTE this strategy should be better than random init, but there could be other combinations of | |
# the original RGB input layer weights that'd work better for specific cases. | |
repeat = int(math.ceil(in_chans / 3)) | |
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] | |
conv_weight *= (3 / float(in_chans)) | |
conv_weight = conv_weight.to(conv_type) | |
return conv_weight | |
def load_pretrained( | |
model: nn.Module, | |
pretrained_cfg: Optional[Dict] = None, | |
num_classes: int = 1000, | |
in_chans: int = 3, | |
filter_fn: Optional[Callable] = None, | |
strict: bool = True, | |
): | |
""" Load pretrained checkpoint | |
Args: | |
model (nn.Module) : PyTorch model module | |
pretrained_cfg (Optional[Dict]): configuration for pretrained weights / target dataset | |
num_classes (int): num_classes for model | |
in_chans (int): in_chans for model | |
filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args) | |
strict (bool): strict load of checkpoint | |
""" | |
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) or {} | |
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) | |
if load_from == 'file': | |
_logger.info(f'Loading pretrained weights from file ({pretrained_loc})') | |
state_dict = load_state_dict(pretrained_loc) | |
elif load_from == 'url': | |
_logger.info(f'Loading pretrained weights from url ({pretrained_loc})') | |
state_dict = load_state_dict_from_url( | |
pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH) | |
elif load_from == 'hf-hub': | |
_logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})') | |
if isinstance(pretrained_loc, (list, tuple)): | |
state_dict = load_state_dict_from_hf(*pretrained_loc) | |
else: | |
state_dict = load_state_dict_from_hf(pretrained_loc) | |
else: | |
_logger.warning("No pretrained weights exist or were found for this model. Using random initialization.") | |
return | |
if filter_fn is not None: | |
# for backwards compat with filter fn that take one arg, try one first, the two | |
try: | |
state_dict = filter_fn(state_dict) | |
except TypeError: | |
state_dict = filter_fn(state_dict, model) | |
input_convs = pretrained_cfg.get('first_conv', None) | |
if input_convs is not None and in_chans != 3: | |
if isinstance(input_convs, str): | |
input_convs = (input_convs,) | |
for input_conv_name in input_convs: | |
weight_name = input_conv_name + '.weight' | |
try: | |
state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) | |
_logger.info( | |
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') | |
except NotImplementedError as e: | |
del state_dict[weight_name] | |
strict = False | |
_logger.warning( | |
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') | |
classifiers = pretrained_cfg.get('classifier', None) | |
label_offset = pretrained_cfg.get('label_offset', 0) | |
if classifiers is not None: | |
if isinstance(classifiers, str): | |
classifiers = (classifiers,) | |
if num_classes != pretrained_cfg['num_classes']: | |
for classifier_name in classifiers: | |
# completely discard fully connected if model num_classes doesn't match pretrained weights | |
state_dict.pop(classifier_name + '.weight', None) | |
state_dict.pop(classifier_name + '.bias', None) | |
strict = False | |
elif label_offset > 0: | |
for classifier_name in classifiers: | |
# special case for pretrained weights with an extra background class in pretrained weights | |
classifier_weight = state_dict[classifier_name + '.weight'] | |
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] | |
classifier_bias = state_dict[classifier_name + '.bias'] | |
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] | |
model.load_state_dict(state_dict, strict=strict) | |
def extract_layer(model, layer): | |
layer = layer.split('.') | |
module = model | |
if hasattr(model, 'module') and layer[0] != 'module': | |
module = model.module | |
if not hasattr(model, 'module') and layer[0] == 'module': | |
layer = layer[1:] | |
for l in layer: | |
if hasattr(module, l): | |
if not l.isdigit(): | |
module = getattr(module, l) | |
else: | |
module = module[int(l)] | |
else: | |
return module | |
return module | |
def set_layer(model, layer, val): | |
layer = layer.split('.') | |
module = model | |
if hasattr(model, 'module') and layer[0] != 'module': | |
module = model.module | |
lst_index = 0 | |
module2 = module | |
for l in layer: | |
if hasattr(module2, l): | |
if not l.isdigit(): | |
module2 = getattr(module2, l) | |
else: | |
module2 = module2[int(l)] | |
lst_index += 1 | |
lst_index -= 1 | |
for l in layer[:lst_index]: | |
if not l.isdigit(): | |
module = getattr(module, l) | |
else: | |
module = module[int(l)] | |
l = layer[lst_index] | |
setattr(module, l, val) | |
def adapt_model_from_string(parent_module, model_string): | |
separator = '***' | |
state_dict = {} | |
lst_shape = model_string.split(separator) | |
for k in lst_shape: | |
k = k.split(':') | |
key = k[0] | |
shape = k[1][1:-1].split(',') | |
if shape[0] != '': | |
state_dict[key] = [int(i) for i in shape] | |
new_module = deepcopy(parent_module) | |
for n, m in parent_module.named_modules(): | |
old_module = extract_layer(parent_module, n) | |
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): | |
if isinstance(old_module, Conv2dSame): | |
conv = Conv2dSame | |
else: | |
conv = nn.Conv2d | |
s = state_dict[n + '.weight'] | |
in_channels = s[1] | |
out_channels = s[0] | |
g = 1 | |
if old_module.groups > 1: | |
in_channels = out_channels | |
g = in_channels | |
new_conv = conv( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, | |
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, | |
groups=g, stride=old_module.stride) | |
set_layer(new_module, n, new_conv) | |
elif isinstance(old_module, BatchNormAct2d): | |
new_bn = BatchNormAct2d( | |
state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, | |
affine=old_module.affine, track_running_stats=True) | |
new_bn.drop = old_module.drop | |
new_bn.act = old_module.act | |
set_layer(new_module, n, new_bn) | |
elif isinstance(old_module, nn.BatchNorm2d): | |
new_bn = nn.BatchNorm2d( | |
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, | |
affine=old_module.affine, track_running_stats=True) | |
set_layer(new_module, n, new_bn) | |
elif isinstance(old_module, nn.Linear): | |
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer? | |
num_features = state_dict[n + '.weight'][1] | |
new_fc = Linear( | |
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) | |
set_layer(new_module, n, new_fc) | |
if hasattr(new_module, 'num_features'): | |
new_module.num_features = num_features | |
new_module.eval() | |
parent_module.eval() | |
return new_module | |
def adapt_model_from_file(parent_module, model_variant): | |
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt') | |
with open(adapt_file, 'r') as f: | |
return adapt_model_from_string(parent_module, f.read().strip()) | |
def pretrained_cfg_for_features(pretrained_cfg): | |
pretrained_cfg = deepcopy(pretrained_cfg) | |
# remove default pretrained cfg fields that don't have much relevance for feature backbone | |
to_remove = ('num_classes', 'crop_pct', 'classifier', 'global_pool') # add default final pool size? | |
for tr in to_remove: | |
pretrained_cfg.pop(tr, None) | |
return pretrained_cfg | |
def set_default_kwargs(kwargs, names, pretrained_cfg): | |
for n in names: | |
# for legacy reasons, model __init__args uses img_size + in_chans as separate args while | |
# pretrained_cfg has one input_size=(C, H ,W) entry | |
if n == 'img_size': | |
input_size = pretrained_cfg.get('input_size', None) | |
if input_size is not None: | |
assert len(input_size) == 3 | |
kwargs.setdefault(n, input_size[-2:]) | |
elif n == 'in_chans': | |
input_size = pretrained_cfg.get('input_size', None) | |
if input_size is not None: | |
assert len(input_size) == 3 | |
kwargs.setdefault(n, input_size[0]) | |
else: | |
default_val = pretrained_cfg.get(n, None) | |
if default_val is not None: | |
kwargs.setdefault(n, pretrained_cfg[n]) | |
def filter_kwargs(kwargs, names): | |
if not kwargs or not names: | |
return | |
for n in names: | |
kwargs.pop(n, None) | |
def update_pretrained_cfg_and_kwargs(pretrained_cfg, kwargs, kwargs_filter): | |
""" Update the default_cfg and kwargs before passing to model | |
Args: | |
pretrained_cfg: input pretrained cfg (updated in-place) | |
kwargs: keyword args passed to model build fn (updated in-place) | |
kwargs_filter: keyword arg keys that must be removed before model __init__ | |
""" | |
# Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs) | |
default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') | |
if pretrained_cfg.get('fixed_input_size', False): | |
# if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size | |
default_kwarg_names += ('img_size',) | |
set_default_kwargs(kwargs, names=default_kwarg_names, pretrained_cfg=pretrained_cfg) | |
# Filter keyword args for task specific model variants (some 'features only' models, etc.) | |
filter_kwargs(kwargs, names=kwargs_filter) | |
def resolve_pretrained_cfg(variant: str, pretrained_cfg=None): | |
if pretrained_cfg and isinstance(pretrained_cfg, dict): | |
# highest priority, pretrained_cfg available and passed as arg | |
return deepcopy(pretrained_cfg) | |
# fallback to looking up pretrained cfg in model registry by variant identifier | |
pretrained_cfg = get_pretrained_cfg(variant) | |
if not pretrained_cfg: | |
_logger.warning( | |
f"No pretrained configuration specified for {variant} model. Using a default." | |
f" Please add a config to the model pretrained_cfg registry or pass explicitly.") | |
pretrained_cfg = dict( | |
url='', | |
num_classes=1000, | |
input_size=(3, 224, 224), | |
pool_size=None, | |
crop_pct=.9, | |
interpolation='bicubic', | |
first_conv='', | |
classifier='', | |
) | |
return pretrained_cfg | |
def build_model_with_cfg( | |
model_cls: Callable, | |
variant: str, | |
pretrained: bool, | |
pretrained_cfg: Optional[Dict] = None, | |
model_cfg: Optional[Any] = None, | |
feature_cfg: Optional[Dict] = None, | |
pretrained_strict: bool = True, | |
pretrained_filter_fn: Optional[Callable] = None, | |
pretrained_custom_load: bool = False, | |
kwargs_filter: Optional[Tuple[str]] = None, | |
**kwargs): | |
""" Build model with specified default_cfg and optional model_cfg | |
This helper fn aids in the construction of a model including: | |
* handling default_cfg and associated pretrained weight loading | |
* passing through optional model_cfg for models with config based arch spec | |
* features_only model adaptation | |
* pruning config / model adaptation | |
Args: | |
model_cls (nn.Module): model class | |
variant (str): model variant name | |
pretrained (bool): load pretrained weights | |
pretrained_cfg (dict): model's pretrained weight/task config | |
model_cfg (Optional[Dict]): model's architecture config | |
feature_cfg (Optional[Dict]: feature extraction adapter config | |
pretrained_strict (bool): load pretrained weights strictly | |
pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights | |
pretrained_custom_load (bool): use custom load fn, to load numpy or other non PyTorch weights | |
kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model | |
**kwargs: model args passed through to model __init__ | |
""" | |
pruned = kwargs.pop('pruned', False) | |
features = False | |
feature_cfg = feature_cfg or {} | |
# resolve and update model pretrained config and model kwargs | |
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=pretrained_cfg) | |
update_pretrained_cfg_and_kwargs(pretrained_cfg, kwargs, kwargs_filter) | |
pretrained_cfg.setdefault('architecture', variant) | |
# Setup for feature extraction wrapper done at end of this fn | |
if kwargs.pop('features_only', False): | |
features = True | |
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) | |
if 'out_indices' in kwargs: | |
feature_cfg['out_indices'] = kwargs.pop('out_indices') | |
# Build the model | |
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) | |
model.pretrained_cfg = pretrained_cfg | |
model.default_cfg = model.pretrained_cfg # alias for backwards compat | |
if pruned: | |
model = adapt_model_from_file(model, variant) | |
# For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats | |
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) | |
if pretrained: | |
if pretrained_custom_load: | |
# FIXME improve custom load trigger | |
load_custom_pretrained(model, pretrained_cfg=pretrained_cfg) | |
else: | |
load_pretrained( | |
model, | |
pretrained_cfg=pretrained_cfg, | |
num_classes=num_classes_pretrained, | |
in_chans=kwargs.get('in_chans', 3), | |
filter_fn=pretrained_filter_fn, | |
strict=pretrained_strict) | |
# Wrap the model in a feature extraction module if enabled | |
if features: | |
feature_cls = FeatureListNet | |
if 'feature_cls' in feature_cfg: | |
feature_cls = feature_cfg.pop('feature_cls') | |
if isinstance(feature_cls, str): | |
feature_cls = feature_cls.lower() | |
if 'hook' in feature_cls: | |
feature_cls = FeatureHookNet | |
elif feature_cls == 'fx': | |
feature_cls = FeatureGraphNet | |
else: | |
assert False, f'Unknown feature class {feature_cls}' | |
model = feature_cls(model, **feature_cfg) | |
model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) # add back default_cfg | |
model.default_cfg = model.pretrained_cfg # alias for backwards compat | |
return model | |
def model_parameters(model, exclude_head=False): | |
if exclude_head: | |
# FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering | |
return [p for p in model.parameters()][:-2] | |
else: | |
return model.parameters() | |
def named_apply(fn: Callable, module: nn.Module, name='', depth_first=True, include_root=False) -> nn.Module: | |
if not depth_first and include_root: | |
fn(module=module, name=name) | |
for child_name, child_module in module.named_children(): | |
child_name = '.'.join((name, child_name)) if name else child_name | |
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) | |
if depth_first and include_root: | |
fn(module=module, name=name) | |
return module | |
def named_modules(module: nn.Module, name='', depth_first=True, include_root=False): | |
if not depth_first and include_root: | |
yield name, module | |
for child_name, child_module in module.named_children(): | |
child_name = '.'.join((name, child_name)) if name else child_name | |
yield from named_modules( | |
module=child_module, name=child_name, depth_first=depth_first, include_root=True) | |
if depth_first and include_root: | |
yield name, module | |
def named_modules_with_params(module: nn.Module, name='', depth_first=True, include_root=False): | |
if module._parameters and not depth_first and include_root: | |
yield name, module | |
for child_name, child_module in module.named_children(): | |
child_name = '.'.join((name, child_name)) if name else child_name | |
yield from named_modules_with_params( | |
module=child_module, name=child_name, depth_first=depth_first, include_root=True) | |
if module._parameters and depth_first and include_root: | |
yield name, module | |
MATCH_PREV_GROUP = (99999,) | |
def group_with_matcher( | |
named_objects, | |
group_matcher: Union[Dict, Callable], | |
output_values: bool = False, | |
reverse: bool = False | |
): | |
if isinstance(group_matcher, dict): | |
# dictionary matcher contains a dict of raw-string regex expr that must be compiled | |
compiled = [] | |
for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()): | |
if mspec is None: | |
continue | |
# map all matching specifications into 3-tuple (compiled re, prefix, suffix) | |
if isinstance(mspec, (tuple, list)): | |
# multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix) | |
for sspec in mspec: | |
compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] | |
else: | |
compiled += [(re.compile(mspec), (group_ordinal,), None)] | |
group_matcher = compiled | |
def _get_grouping(name): | |
if isinstance(group_matcher, (list, tuple)): | |
for match_fn, prefix, suffix in group_matcher: | |
r = match_fn.match(name) | |
if r: | |
parts = (prefix, r.groups(), suffix) | |
# map all tuple elem to int for numeric sort, filter out None entries | |
return tuple(map(float, chain.from_iterable(filter(None, parts)))) | |
return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal | |
else: | |
ord = group_matcher(name) | |
if not isinstance(ord, collections.abc.Iterable): | |
return ord, | |
return tuple(ord) | |
# map layers into groups via ordinals (ints or tuples of ints) from matcher | |
grouping = defaultdict(list) | |
for k, v in named_objects: | |
grouping[_get_grouping(k)].append(v if output_values else k) | |
# remap to integers | |
layer_id_to_param = defaultdict(list) | |
lid = -1 | |
for k in sorted(filter(lambda x: x is not None, grouping.keys())): | |
if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: | |
lid += 1 | |
layer_id_to_param[lid].extend(grouping[k]) | |
if reverse: | |
assert not output_values, "reverse mapping only sensible for name output" | |
# output reverse mapping | |
param_to_layer_id = {} | |
for lid, lm in layer_id_to_param.items(): | |
for n in lm: | |
param_to_layer_id[n] = lid | |
return param_to_layer_id | |
return layer_id_to_param | |
def group_parameters( | |
module: nn.Module, | |
group_matcher, | |
output_values=False, | |
reverse=False, | |
): | |
return group_with_matcher( | |
module.named_parameters(), group_matcher, output_values=output_values, reverse=reverse) | |
def group_modules( | |
module: nn.Module, | |
group_matcher, | |
output_values=False, | |
reverse=False, | |
): | |
return group_with_matcher( | |
named_modules_with_params(module), group_matcher, output_values=output_values, reverse=reverse) | |
def checkpoint_seq( | |
functions, | |
x, | |
every=1, | |
flatten=False, | |
skip_last=False, | |
preserve_rng_state=True | |
): | |
r"""A helper function for checkpointing sequential models. | |
Sequential models execute a list of modules/functions in order | |
(sequentially). Therefore, we can divide such a sequence into segments | |
and checkpoint each segment. All segments except run in :func:`torch.no_grad` | |
manner, i.e., not storing the intermediate activations. The inputs of each | |
checkpointed segment will be saved for re-running the segment in the backward pass. | |
See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works. | |
.. warning:: | |
Checkpointing currently only supports :func:`torch.autograd.backward` | |
and only if its `inputs` argument is not passed. :func:`torch.autograd.grad` | |
is not supported. | |
.. warning: | |
At least one of the inputs needs to have :code:`requires_grad=True` if | |
grads are needed for model inputs, otherwise the checkpointed part of the | |
model won't have gradients. | |
Args: | |
functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially. | |
x: A Tensor that is input to :attr:`functions` | |
every: checkpoint every-n functions (default: 1) | |
flatten (bool): flatten nn.Sequential of nn.Sequentials | |
skip_last (bool): skip checkpointing the last function in the sequence if True | |
preserve_rng_state (bool, optional, default=True): Omit stashing and restoring | |
the RNG state during each checkpoint. | |
Returns: | |
Output of running :attr:`functions` sequentially on :attr:`*inputs` | |
Example: | |
>>> model = nn.Sequential(...) | |
>>> input_var = checkpoint_seq(model, input_var, every=2) | |
""" | |
def run_function(start, end, functions): | |
def forward(_x): | |
for j in range(start, end + 1): | |
_x = functions[j](_x) | |
return _x | |
return forward | |
if isinstance(functions, torch.nn.Sequential): | |
functions = functions.children() | |
if flatten: | |
functions = chain.from_iterable(functions) | |
if not isinstance(functions, (tuple, list)): | |
functions = tuple(functions) | |
num_checkpointed = len(functions) | |
if skip_last: | |
num_checkpointed -= 1 | |
end = -1 | |
for start in range(0, num_checkpointed, every): | |
end = min(start + every - 1, num_checkpointed - 1) | |
x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) | |
if skip_last: | |
return run_function(end + 1, len(functions) - 1, functions)(x) | |
return x | |
def flatten_modules(named_modules, depth=1, prefix='', module_types='sequential'): | |
prefix_is_tuple = isinstance(prefix, tuple) | |
if isinstance(module_types, str): | |
if module_types == 'container': | |
module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) | |
else: | |
module_types = (nn.Sequential,) | |
for name, module in named_modules: | |
if depth and isinstance(module, module_types): | |
yield from flatten_modules( | |
module.named_children(), | |
depth - 1, | |
prefix=(name,) if prefix_is_tuple else name, | |
module_types=module_types, | |
) | |
else: | |
if prefix_is_tuple: | |
name = prefix + (name,) | |
yield name, module | |
else: | |
if prefix: | |
name = '.'.join([prefix, name]) | |
yield name, module | |