Spaces:
Running
Running
""" HRNet | |
Copied from https://github.com/HRNet/HRNet-Image-Classification | |
Original header: | |
Copyright (c) Microsoft | |
Licensed under the MIT License. | |
Written by Bin Xiao (Bin.Xiao@microsoft.com) | |
Modified by Ke Sun (sunk@mail.ustc.edu.cn) | |
""" | |
import logging | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .features import FeatureInfo | |
from .helpers import build_model_with_cfg, pretrained_cfg_for_features | |
from .layers import create_classifier | |
from .registry import register_model | |
from .resnet import BasicBlock, Bottleneck # leveraging ResNet blocks w/ additional features like SE | |
_BN_MOMENTUM = 0.1 | |
_logger = logging.getLogger(__name__) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'conv1', 'classifier': 'classifier', | |
**kwargs | |
} | |
default_cfgs = { | |
'hrnet_w18_small': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth'), | |
'hrnet_w18_small_v2': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth'), | |
'hrnet_w18': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth'), | |
'hrnet_w30': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth'), | |
'hrnet_w32': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth'), | |
'hrnet_w40': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth'), | |
'hrnet_w44': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth'), | |
'hrnet_w48': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth'), | |
'hrnet_w64': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth'), | |
} | |
cfg_cls = dict( | |
hrnet_w18_small=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(1,), | |
NUM_CHANNELS=(32,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2), | |
NUM_CHANNELS=(16, 32), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2, 2), | |
NUM_CHANNELS=(16, 32, 64), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2, 2, 2), | |
NUM_CHANNELS=(16, 32, 64, 128), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w18_small_v2=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(2,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2), | |
NUM_CHANNELS=(18, 36), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2, 2), | |
NUM_CHANNELS=(18, 36, 72), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=2, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(2, 2, 2, 2), | |
NUM_CHANNELS=(18, 36, 72, 144), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w18=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(18, 36), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(18, 36, 72), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(18, 36, 72, 144), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w30=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(30, 60), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(30, 60, 120), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(30, 60, 120, 240), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w32=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(32, 64), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(32, 64, 128), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(32, 64, 128, 256), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w40=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(40, 80), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(40, 80, 160), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(40, 80, 160, 320), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w44=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(44, 88), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(44, 88, 176), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(44, 88, 176, 352), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w48=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(48, 96), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(48, 96, 192), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(48, 96, 192, 384), | |
FUSE_METHOD='SUM', | |
), | |
), | |
hrnet_w64=dict( | |
STEM_WIDTH=64, | |
STAGE1=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=1, | |
BLOCK='BOTTLENECK', | |
NUM_BLOCKS=(4,), | |
NUM_CHANNELS=(64,), | |
FUSE_METHOD='SUM', | |
), | |
STAGE2=dict( | |
NUM_MODULES=1, | |
NUM_BRANCHES=2, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4), | |
NUM_CHANNELS=(64, 128), | |
FUSE_METHOD='SUM' | |
), | |
STAGE3=dict( | |
NUM_MODULES=4, | |
NUM_BRANCHES=3, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4), | |
NUM_CHANNELS=(64, 128, 256), | |
FUSE_METHOD='SUM' | |
), | |
STAGE4=dict( | |
NUM_MODULES=3, | |
NUM_BRANCHES=4, | |
BLOCK='BASIC', | |
NUM_BLOCKS=(4, 4, 4, 4), | |
NUM_CHANNELS=(64, 128, 256, 512), | |
FUSE_METHOD='SUM', | |
), | |
) | |
) | |
class HighResolutionModule(nn.Module): | |
def __init__(self, num_branches, blocks, num_blocks, num_in_chs, | |
num_channels, fuse_method, multi_scale_output=True): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches( | |
num_branches, blocks, num_blocks, num_in_chs, num_channels) | |
self.num_in_chs = num_in_chs | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.fuse_act = nn.ReLU(False) | |
def _check_branches(self, num_branches, blocks, num_blocks, num_in_chs, num_channels): | |
error_msg = '' | |
if num_branches != len(num_blocks): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(num_branches, len(num_blocks)) | |
elif num_branches != len(num_channels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(num_branches, len(num_channels)) | |
elif num_branches != len(num_in_chs): | |
error_msg = 'NUM_BRANCHES({}) <> num_in_chs({})'.format(num_branches, len(num_in_chs)) | |
if error_msg: | |
_logger.error(error_msg) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
downsample = None | |
if stride != 1 or self.num_in_chs[branch_index] != num_channels[branch_index] * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.num_in_chs[branch_index], num_channels[branch_index] * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=_BN_MOMENTUM), | |
) | |
layers = [block(self.num_in_chs[branch_index], num_channels[branch_index], stride, downsample)] | |
self.num_in_chs[branch_index] = num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append(block(self.num_in_chs[branch_index], num_channels[branch_index])) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return nn.Identity() | |
num_branches = self.num_branches | |
num_in_chs = self.num_in_chs | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append(nn.Sequential( | |
nn.Conv2d(num_in_chs[j], num_in_chs[i], 1, 1, 0, bias=False), | |
nn.BatchNorm2d(num_in_chs[i], momentum=_BN_MOMENTUM), | |
nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) | |
elif j == i: | |
fuse_layer.append(nn.Identity()) | |
else: | |
conv3x3s = [] | |
for k in range(i - j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_in_chs[i] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_in_chs[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM))) | |
else: | |
num_outchannels_conv3x3 = num_in_chs[j] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_in_chs[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM), | |
nn.ReLU(False))) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_in_chs(self): | |
return self.num_in_chs | |
def forward(self, x: List[torch.Tensor]): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i, branch in enumerate(self.branches): | |
x[i] = branch(x[i]) | |
x_fuse = [] | |
for i, fuse_outer in enumerate(self.fuse_layers): | |
y = x[0] if i == 0 else fuse_outer[0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
else: | |
y = y + fuse_outer[j](x[j]) | |
x_fuse.append(self.fuse_act(y)) | |
return x_fuse | |
blocks_dict = { | |
'BASIC': BasicBlock, | |
'BOTTLENECK': Bottleneck | |
} | |
class HighResolutionNet(nn.Module): | |
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, head='classification'): | |
super(HighResolutionNet, self).__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
stem_width = cfg['STEM_WIDTH'] | |
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM) | |
self.act1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM) | |
self.act2 = nn.ReLU(inplace=True) | |
self.stage1_cfg = cfg['STAGE1'] | |
num_channels = self.stage1_cfg['NUM_CHANNELS'][0] | |
block = blocks_dict[self.stage1_cfg['BLOCK']] | |
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] | |
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) | |
stage1_out_channel = block.expansion * num_channels | |
self.stage2_cfg = cfg['STAGE2'] | |
num_channels = self.stage2_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage2_cfg['BLOCK']] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) | |
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) | |
self.stage3_cfg = cfg['STAGE3'] | |
num_channels = self.stage3_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage3_cfg['BLOCK']] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) | |
self.stage4_cfg = cfg['STAGE4'] | |
num_channels = self.stage4_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage4_cfg['BLOCK']] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True) | |
self.head = head | |
self.head_channels = None # set if _make_head called | |
if head == 'classification': | |
# Classification Head | |
self.num_features = 2048 | |
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head(pre_stage_channels) | |
self.global_pool, self.classifier = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
elif head == 'incre': | |
self.num_features = 2048 | |
self.incre_modules, _, _ = self._make_head(pre_stage_channels, True) | |
else: | |
self.incre_modules = None | |
self.num_features = 256 | |
curr_stride = 2 | |
# module names aren't actually valid here, hook or FeatureNet based extraction would not work | |
self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')] | |
for i, c in enumerate(self.head_channels if self.head_channels else num_channels): | |
curr_stride *= 2 | |
c = c * 4 if self.head_channels else c # head block expansion factor of 4 | |
self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')] | |
self.init_weights() | |
def _make_head(self, pre_stage_channels, incre_only=False): | |
head_block = Bottleneck | |
self.head_channels = [32, 64, 128, 256] | |
# Increasing the #channels on each resolution | |
# from C, 2C, 4C, 8C to 128, 256, 512, 1024 | |
incre_modules = [] | |
for i, channels in enumerate(pre_stage_channels): | |
incre_modules.append(self._make_layer(head_block, channels, self.head_channels[i], 1, stride=1)) | |
incre_modules = nn.ModuleList(incre_modules) | |
if incre_only: | |
return incre_modules, None, None | |
# downsampling modules | |
downsamp_modules = [] | |
for i in range(len(pre_stage_channels) - 1): | |
in_channels = self.head_channels[i] * head_block.expansion | |
out_channels = self.head_channels[i + 1] * head_block.expansion | |
downsamp_module = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1), | |
nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM), | |
nn.ReLU(inplace=True) | |
) | |
downsamp_modules.append(downsamp_module) | |
downsamp_modules = nn.ModuleList(downsamp_modules) | |
final_layer = nn.Sequential( | |
nn.Conv2d( | |
in_channels=self.head_channels[3] * head_block.expansion, | |
out_channels=self.num_features, kernel_size=1, stride=1, padding=0 | |
), | |
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM), | |
nn.ReLU(inplace=True) | |
) | |
return incre_modules, downsamp_modules, final_layer | |
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append(nn.Sequential( | |
nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), | |
nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM), | |
nn.ReLU(inplace=True))) | |
else: | |
transition_layers.append(nn.Identity()) | |
else: | |
conv3x3s = [] | |
for j in range(i + 1 - num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(outchannels, momentum=_BN_MOMENTUM), | |
nn.ReLU(inplace=True))) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion, momentum=_BN_MOMENTUM), | |
) | |
layers = [block(inplanes, planes, stride, downsample)] | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_stage(self, layer_config, num_in_chs, multi_scale_output=True): | |
num_modules = layer_config['NUM_MODULES'] | |
num_branches = layer_config['NUM_BRANCHES'] | |
num_blocks = layer_config['NUM_BLOCKS'] | |
num_channels = layer_config['NUM_CHANNELS'] | |
block = blocks_dict[layer_config['BLOCK']] | |
fuse_method = layer_config['FUSE_METHOD'] | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
reset_multi_scale_output = multi_scale_output or i < num_modules - 1 | |
modules.append(HighResolutionModule( | |
num_branches, block, num_blocks, num_in_chs, num_channels, fuse_method, reset_multi_scale_output) | |
) | |
num_in_chs = modules[-1].get_num_in_chs() | |
return nn.Sequential(*modules), num_in_chs | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_( | |
m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^conv[12]|bn[12]', | |
blocks=r'^(?:layer|stage|transition)(\d+)' if coarse else [ | |
(r'^layer(\d+)\.(\d+)', None), | |
(r'^stage(\d+)\.(\d+)', None), | |
(r'^transition(\d+)', (99999,)), | |
], | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, "gradient checkpointing not supported" | |
def get_classifier(self): | |
return self.classifier | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.classifier = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
def stages(self, x) -> List[torch.Tensor]: | |
x = self.layer1(x) | |
xl = [t(x) for i, t in enumerate(self.transition1)] | |
yl = self.stage2(xl) | |
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition2)] | |
yl = self.stage3(xl) | |
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition3)] | |
yl = self.stage4(xl) | |
return yl | |
def forward_features(self, x): | |
# Stem | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
# Stages | |
yl = self.stages(x) | |
if self.incre_modules is None or self.downsamp_modules is None: | |
return yl | |
y = self.incre_modules[0](yl[0]) | |
for i, down in enumerate(self.downsamp_modules): | |
y = self.incre_modules[i + 1](yl[i + 1]) + down(y) | |
y = self.final_layer(y) | |
return y | |
def forward_head(self, x, pre_logits: bool = False): | |
# Classification Head | |
x = self.global_pool(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
return x if pre_logits else self.classifier(x) | |
def forward(self, x): | |
y = self.forward_features(x) | |
x = self.forward_head(y) | |
return x | |
class HighResolutionNetFeatures(HighResolutionNet): | |
"""HighResolutionNet feature extraction | |
The design of HRNet makes it easy to grab feature maps, this class provides a simple wrapper to do so. | |
It would be more complicated to use the FeatureNet helpers. | |
The `feature_location=incre` allows grabbing increased channel count features using part of the | |
classification head. If `feature_location=''` the default HRNet features are returned. First stem | |
conv is used for stride 2 features. | |
""" | |
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, | |
feature_location='incre', out_indices=(0, 1, 2, 3, 4)): | |
assert feature_location in ('incre', '') | |
super(HighResolutionNetFeatures, self).__init__( | |
cfg, in_chans=in_chans, num_classes=num_classes, global_pool=global_pool, | |
drop_rate=drop_rate, head=feature_location) | |
self.feature_info = FeatureInfo(self.feature_info, out_indices) | |
self._out_idx = {i for i in out_indices} | |
def forward_features(self, x): | |
assert False, 'Not supported' | |
def forward(self, x) -> List[torch.tensor]: | |
out = [] | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
if 0 in self._out_idx: | |
out.append(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
x = self.stages(x) | |
if self.incre_modules is not None: | |
x = [incre(f) for f, incre in zip(x, self.incre_modules)] | |
for i, f in enumerate(x): | |
if i + 1 in self._out_idx: | |
out.append(f) | |
return out | |
def _create_hrnet(variant, pretrained, **model_kwargs): | |
model_cls = HighResolutionNet | |
features_only = False | |
kwargs_filter = None | |
if model_kwargs.pop('features_only', False): | |
model_cls = HighResolutionNetFeatures | |
kwargs_filter = ('num_classes', 'global_pool') | |
features_only = True | |
model = build_model_with_cfg( | |
model_cls, variant, pretrained, | |
model_cfg=cfg_cls[variant], | |
pretrained_strict=not features_only, | |
kwargs_filter=kwargs_filter, | |
**model_kwargs) | |
if features_only: | |
model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg) | |
model.default_cfg = model.pretrained_cfg # backwards compat | |
return model | |
def hrnet_w18_small(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) | |
def hrnet_w18_small_v2(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) | |
def hrnet_w18(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w18', pretrained, **kwargs) | |
def hrnet_w30(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w30', pretrained, **kwargs) | |
def hrnet_w32(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w32', pretrained, **kwargs) | |
def hrnet_w40(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w40', pretrained, **kwargs) | |
def hrnet_w44(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w44', pretrained, **kwargs) | |
def hrnet_w48(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w48', pretrained, **kwargs) | |
def hrnet_w64(pretrained=False, **kwargs): | |
return _create_hrnet('hrnet_w64', pretrained, **kwargs) | |