gartajackhats1985's picture
Upload 1830 files
07f408f verified
raw
history blame
68.3 kB
""" MaxVit and CoAtNet Vision Transformer - CNN Hybrids in PyTorch
This is a from-scratch implementation of both CoAtNet and MaxVit in PyTorch.
99% of the implementation was done from papers, however last minute some adjustments were made
based on the (as yet unfinished?) public code release https://github.com/google-research/maxvit
There are multiple sets of models defined for both architectures. Typically, names with a
`_rw` suffix are my own original configs prior to referencing https://github.com/google-research/maxvit.
These configs work well and appear to be a bit faster / lower resource than the paper.
The models without extra prefix / suffix' (coatnet_0_224, maxvit_tiny_224, etc), are intended to
match paper, BUT, without any official pretrained weights it's difficult to confirm a 100% match.
# FIXME / WARNING
This impl remains a WIP, some configs and models may vanish or change...
Papers:
MaxViT: Multi-Axis Vision Transformer - https://arxiv.org/abs/2204.01697
@article{tu2022maxvit,
title={MaxViT: Multi-Axis Vision Transformer},
author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
journal={ECCV},
year={2022},
}
CoAtNet: Marrying Convolution and Attention for All Data Sizes - https://arxiv.org/abs/2106.04803
@article{DBLP:journals/corr/abs-2106-04803,
author = {Zihang Dai and Hanxiao Liu and Quoc V. Le and Mingxing Tan},
title = {CoAtNet: Marrying Convolution and Attention for All Data Sizes},
journal = {CoRR},
volume = {abs/2106.04803},
year = {2021}
}
Hacked together by / Copyright 2022, Ross Wightman
"""
import math
from collections import OrderedDict
from dataclasses import dataclass, replace, field
from functools import partial
from typing import Callable, Optional, Union, Tuple, List
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, checkpoint_seq, named_apply
from .fx_features import register_notrace_function
from .layers import Mlp, ConvMlp, DropPath, ClassifierHead, trunc_normal_tf_, LayerNorm2d, LayerNorm
from .layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d
from .layers import to_2tuple, extend_tuple, make_divisible, _assert
from .registry import register_model
from .vision_transformer_relpos import RelPosMlp, RelPosBias # FIXME move these to common location
__all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit']
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.95, 'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'first_conv': 'stem.conv1', 'classifier': 'head.fc',
'fixed_input_size': True,
**kwargs
}
default_cfgs = {
# Fiddling with configs / defaults / still pretraining
'coatnet_pico_rw_224': _cfg(url=''),
'coatnet_nano_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth',
crop_pct=0.9),
'coatnet_0_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'),
'coatnet_1_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth'
),
'coatnet_2_rw_224': _cfg(url=''),
'coatnet_3_rw_224': _cfg(url=''),
# Highly experimental configs
'coatnet_bn_0_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
crop_pct=0.95),
'coatnet_rmlp_nano_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth',
crop_pct=0.9),
'coatnet_rmlp_0_rw_224': _cfg(url=''),
'coatnet_rmlp_1_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'),
'coatnet_rmlp_2_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'),
'coatnet_rmlp_3_rw_224': _cfg(url=''),
'coatnet_nano_cc_224': _cfg(url=''),
'coatnext_nano_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth',
crop_pct=0.9),
# Trying to be like the CoAtNet paper configs
'coatnet_0_224': _cfg(url=''),
'coatnet_1_224': _cfg(url=''),
'coatnet_2_224': _cfg(url=''),
'coatnet_3_224': _cfg(url=''),
'coatnet_4_224': _cfg(url=''),
'coatnet_5_224': _cfg(url=''),
# Experimental configs
'maxvit_pico_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_nano_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_tiny_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'),
'maxvit_tiny_rw_256': _cfg(
url='',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_rmlp_pico_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_rmlp_nano_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_rmlp_tiny_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_rmlp_small_rw_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth',
crop_pct=0.9,
),
'maxvit_rmlp_small_rw_256': _cfg(
url='',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxvit_tiny_pm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
'maxxvit_rmlp_nano_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'maxxvit_rmlp_tiny_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
'maxxvit_rmlp_small_rw_256': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
# Trying to be like the MaxViT paper configs
'maxvit_tiny_224': _cfg(url=''),
'maxvit_small_224': _cfg(url=''),
'maxvit_base_224': _cfg(url=''),
'maxvit_large_224': _cfg(url=''),
'maxvit_xlarge_224': _cfg(url=''),
}
@dataclass
class MaxxVitTransformerCfg:
dim_head: int = 32
expand_ratio: float = 4.0
expand_first: bool = True
shortcut_bias: bool = True
attn_bias: bool = True
attn_drop: float = 0.
proj_drop: float = 0.
pool_type: str = 'avg2'
rel_pos_type: str = 'bias'
rel_pos_dim: int = 512 # for relative position types w/ MLP
partition_ratio: int = 32
window_size: Optional[Tuple[int, int]] = None
grid_size: Optional[Tuple[int, int]] = None
init_values: Optional[float] = None
act_layer: str = 'gelu'
norm_layer: str = 'layernorm2d'
norm_layer_cl: str = 'layernorm'
norm_eps: float = 1e-6
def __post_init__(self):
if self.grid_size is not None:
self.grid_size = to_2tuple(self.grid_size)
if self.window_size is not None:
self.window_size = to_2tuple(self.window_size)
if self.grid_size is None:
self.grid_size = self.window_size
@dataclass
class MaxxVitConvCfg:
block_type: str = 'mbconv'
expand_ratio: float = 4.0
expand_output: bool = True # calculate expansion channels from output (vs input chs)
kernel_size: int = 3
group_size: int = 1 # 1 == depthwise
pre_norm_act: bool = False # activation after pre-norm
output_bias: bool = True # bias for shortcut + final 1x1 projection conv
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
pool_type: str = 'avg2'
downsample_pool_type: str = 'avg2'
attn_early: bool = False # apply attn between conv2 and norm2, instead of after norm2
attn_layer: str = 'se'
attn_act_layer: str = 'silu'
attn_ratio: float = 0.25
init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv
act_layer: str = 'gelu'
norm_layer: str = ''
norm_layer_cl: str = ''
norm_eps: Optional[float] = None
def __post_init__(self):
# mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args
assert self.block_type in ('mbconv', 'convnext')
use_mbconv = self.block_type == 'mbconv'
if not self.norm_layer:
self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d'
if not self.norm_layer_cl and not use_mbconv:
self.norm_layer_cl = 'layernorm'
if self.norm_eps is None:
self.norm_eps = 1e-5 if use_mbconv else 1e-6
self.downsample_pool_type = self.downsample_pool_type or self.pool_type
@dataclass
class MaxxVitCfg:
embed_dim: Tuple[int, ...] = (96, 192, 384, 768)
depths: Tuple[int, ...] = (2, 3, 5, 2)
block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T')
stem_width: Union[int, Tuple[int, int]] = 64
stem_bias: bool = True
conv_cfg: MaxxVitConvCfg = field(default_factory=MaxxVitConvCfg)
transformer_cfg: MaxxVitTransformerCfg = field(default_factory=MaxxVitTransformerCfg)
weight_init: str = 'vit_eff'
def _rw_coat_cfg(
stride_mode='pool',
pool_type='avg2',
conv_output_bias=False,
conv_attn_early=False,
conv_attn_act_layer='relu',
conv_norm_layer='',
transformer_shortcut_bias=True,
transformer_norm_layer='layernorm2d',
transformer_norm_layer_cl='layernorm',
init_values=None,
rel_pos_type='bias',
rel_pos_dim=512,
):
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit
# Common differences for initial timm models:
# - pre-norm layer in MZBConv included an activation after norm
# - mbconv expansion calculated from input instead of output chs
# - mbconv shortcut and final 1x1 conv did not have a bias
# - SE act layer was relu, not silu
# - mbconv uses silu in timm, not gelu
# - expansion in attention block done via output proj, not input proj
# Variable differences (evolved over training initial models):
# - avg pool with kernel_size=2 favoured downsampling (instead of maxpool for coat)
# - SE attention was between conv2 and norm/act
# - default to avg pool for mbconv downsample instead of 1x1 or dw conv
# - transformer block shortcut has no bias
return dict(
conv_cfg=MaxxVitConvCfg(
stride_mode=stride_mode,
pool_type=pool_type,
pre_norm_act=True,
expand_output=False,
output_bias=conv_output_bias,
attn_early=conv_attn_early,
attn_act_layer=conv_attn_act_layer,
act_layer='silu',
norm_layer=conv_norm_layer,
),
transformer_cfg=MaxxVitTransformerCfg(
expand_first=False,
shortcut_bias=transformer_shortcut_bias,
pool_type=pool_type,
init_values=init_values,
norm_layer=transformer_norm_layer,
norm_layer_cl=transformer_norm_layer_cl,
rel_pos_type=rel_pos_type,
rel_pos_dim=rel_pos_dim,
),
)
def _rw_max_cfg(
stride_mode='dw',
pool_type='avg2',
conv_output_bias=False,
conv_attn_ratio=1 / 16,
conv_norm_layer='',
transformer_norm_layer='layernorm2d',
transformer_norm_layer_cl='layernorm',
window_size=None,
dim_head=32,
init_values=None,
rel_pos_type='bias',
rel_pos_dim=512,
):
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit
# Differences of initial timm models:
# - mbconv expansion calculated from input instead of output chs
# - mbconv shortcut and final 1x1 conv did not have a bias
# - mbconv uses silu in timm, not gelu
# - expansion in attention block done via output proj, not input proj
return dict(
conv_cfg=MaxxVitConvCfg(
stride_mode=stride_mode,
pool_type=pool_type,
expand_output=False,
output_bias=conv_output_bias,
attn_ratio=conv_attn_ratio,
act_layer='silu',
norm_layer=conv_norm_layer,
),
transformer_cfg=MaxxVitTransformerCfg(
expand_first=False,
pool_type=pool_type,
dim_head=dim_head,
window_size=window_size,
init_values=init_values,
norm_layer=transformer_norm_layer,
norm_layer_cl=transformer_norm_layer_cl,
rel_pos_type=rel_pos_type,
rel_pos_dim=rel_pos_dim,
),
)
def _next_cfg(
stride_mode='dw',
pool_type='avg2',
conv_norm_layer='layernorm2d',
conv_norm_layer_cl='layernorm',
transformer_norm_layer='layernorm2d',
transformer_norm_layer_cl='layernorm',
window_size=None,
init_values=1e-6,
rel_pos_type='mlp', # MLP by default for maxxvit
rel_pos_dim=512,
):
# For experimental models with convnext instead of mbconv
init_values = to_2tuple(init_values)
return dict(
conv_cfg=MaxxVitConvCfg(
block_type='convnext',
stride_mode=stride_mode,
pool_type=pool_type,
expand_output=False,
init_values=init_values[0],
norm_layer=conv_norm_layer,
norm_layer_cl=conv_norm_layer_cl,
),
transformer_cfg=MaxxVitTransformerCfg(
expand_first=False,
pool_type=pool_type,
window_size=window_size,
init_values=init_values[1],
norm_layer=transformer_norm_layer,
norm_layer_cl=transformer_norm_layer_cl,
rel_pos_type=rel_pos_type,
rel_pos_dim=rel_pos_dim,
),
)
model_cfgs = dict(
# Fiddling with configs / defaults / still pretraining
coatnet_pico_rw_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 3, 5, 2),
stem_width=(32, 64),
**_rw_max_cfg( # using newer max defaults here
conv_output_bias=True,
conv_attn_ratio=0.25,
),
),
coatnet_nano_rw_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(3, 4, 6, 3),
stem_width=(32, 64),
**_rw_max_cfg( # using newer max defaults here
stride_mode='pool',
conv_output_bias=True,
conv_attn_ratio=0.25,
),
),
coatnet_0_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 3, 7, 2), # deeper than paper '0' model
stem_width=(32, 64),
**_rw_coat_cfg(
conv_attn_early=True,
transformer_shortcut_bias=False,
),
),
coatnet_1_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 6, 14, 2),
stem_width=(32, 64),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_early=True,
transformer_shortcut_bias=False,
)
),
coatnet_2_rw_224=MaxxVitCfg(
embed_dim=(128, 256, 512, 1024),
depths=(2, 6, 14, 2),
stem_width=(64, 128),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_act_layer='silu',
init_values=1e-6,
),
),
coatnet_3_rw_224=MaxxVitCfg(
embed_dim=(192, 384, 768, 1536),
depths=(2, 6, 14, 2),
stem_width=(96, 192),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_act_layer='silu',
init_values=1e-6,
),
),
# Highly experimental configs
coatnet_bn_0_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 3, 7, 2), # deeper than paper '0' model
stem_width=(32, 64),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_early=True,
transformer_shortcut_bias=False,
transformer_norm_layer='batchnorm2d',
)
),
coatnet_rmlp_nano_rw_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(3, 4, 6, 3),
stem_width=(32, 64),
**_rw_max_cfg(
conv_output_bias=True,
conv_attn_ratio=0.25,
rel_pos_type='mlp',
rel_pos_dim=384,
),
),
coatnet_rmlp_0_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 3, 7, 2), # deeper than paper '0' model
stem_width=(32, 64),
**_rw_coat_cfg(
stride_mode='dw',
rel_pos_type='mlp',
),
),
coatnet_rmlp_1_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 6, 14, 2),
stem_width=(32, 64),
**_rw_coat_cfg(
pool_type='max',
conv_attn_early=True,
transformer_shortcut_bias=False,
rel_pos_type='mlp',
rel_pos_dim=384, # was supposed to be 512, woops
),
),
coatnet_rmlp_2_rw_224=MaxxVitCfg(
embed_dim=(128, 256, 512, 1024),
depths=(2, 6, 14, 2),
stem_width=(64, 128),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_act_layer='silu',
init_values=1e-6,
rel_pos_type='mlp'
),
),
coatnet_rmlp_3_rw_224=MaxxVitCfg(
embed_dim=(192, 384, 768, 1536),
depths=(2, 6, 14, 2),
stem_width=(96, 192),
**_rw_coat_cfg(
stride_mode='dw',
conv_attn_act_layer='silu',
init_values=1e-6,
rel_pos_type='mlp'
),
),
coatnet_nano_cc_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(3, 4, 6, 3),
stem_width=(32, 64),
block_type=('C', 'C', ('C', 'T'), ('C', 'T')),
**_rw_coat_cfg(),
),
coatnext_nano_rw_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(3, 4, 6, 3),
stem_width=(32, 64),
weight_init='normal',
**_next_cfg(
rel_pos_type='bias',
init_values=(1e-5, None)
),
),
# Trying to be like the CoAtNet paper configs
coatnet_0_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 3, 5, 2),
stem_width=64,
),
coatnet_1_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 6, 14, 2),
stem_width=64,
),
coatnet_2_224=MaxxVitCfg(
embed_dim=(128, 256, 512, 1024),
depths=(2, 6, 14, 2),
stem_width=128,
),
coatnet_3_224=MaxxVitCfg(
embed_dim=(192, 384, 768, 1536),
depths=(2, 6, 14, 2),
stem_width=192,
),
coatnet_4_224=MaxxVitCfg(
embed_dim=(192, 384, 768, 1536),
depths=(2, 12, 28, 2),
stem_width=192,
),
coatnet_5_224=MaxxVitCfg(
embed_dim=(256, 512, 1280, 2048),
depths=(2, 12, 28, 2),
stem_width=192,
),
# Experimental MaxVit configs
maxvit_pico_rw_256=MaxxVitCfg(
embed_dim=(32, 64, 128, 256),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(24, 32),
**_rw_max_cfg(),
),
maxvit_nano_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(1, 2, 3, 1),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(),
),
maxvit_tiny_rw_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(),
),
maxvit_tiny_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(),
),
maxvit_rmlp_pico_rw_256=MaxxVitCfg(
embed_dim=(32, 64, 128, 256),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(24, 32),
**_rw_max_cfg(rel_pos_type='mlp'),
),
maxvit_rmlp_nano_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(1, 2, 3, 1),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(rel_pos_type='mlp'),
),
maxvit_rmlp_tiny_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(rel_pos_type='mlp'),
),
maxvit_rmlp_small_rw_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(
rel_pos_type='mlp',
init_values=1e-6,
),
),
maxvit_rmlp_small_rw_256=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(
rel_pos_type='mlp',
init_values=1e-6,
),
),
maxvit_tiny_pm_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('PM',) * 4,
stem_width=(32, 64),
**_rw_max_cfg(),
),
maxxvit_rmlp_nano_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(1, 2, 3, 1),
block_type=('M',) * 4,
stem_width=(32, 64),
weight_init='normal',
**_next_cfg(),
),
maxxvit_rmlp_tiny_rw_256=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(32, 64),
**_next_cfg(),
),
maxxvit_rmlp_small_rw_256=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=(48, 96),
**_next_cfg(),
),
# Trying to be like the MaxViT paper configs
maxvit_tiny_224=MaxxVitCfg(
embed_dim=(64, 128, 256, 512),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=64,
),
maxvit_small_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 2, 5, 2),
block_type=('M',) * 4,
stem_width=64,
),
maxvit_base_224=MaxxVitCfg(
embed_dim=(96, 192, 384, 768),
depths=(2, 6, 14, 2),
block_type=('M',) * 4,
stem_width=64,
),
maxvit_large_224=MaxxVitCfg(
embed_dim=(128, 256, 512, 1024),
depths=(2, 6, 14, 2),
block_type=('M',) * 4,
stem_width=128,
),
maxvit_xlarge_224=MaxxVitCfg(
embed_dim=(192, 384, 768, 1536),
depths=(2, 6, 14, 2),
block_type=('M',) * 4,
stem_width=192,
),
)
class Attention2d(nn.Module):
""" multi-head attention for 2D NCHW tensors"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
dim_head: int = 32,
bias: bool = True,
expand_first: bool = True,
rel_pos_cls: Callable = None,
attn_drop: float = 0.,
proj_drop: float = 0.
):
super().__init__()
dim_out = dim_out or dim
dim_attn = dim_out if expand_first else dim
self.num_heads = dim_attn // dim_head
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias)
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
B, C, H, W = x.shape
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2)
attn = (q.transpose(-2, -1) @ k) * self.scale
if self.rel_pos is not None:
attn = self.rel_pos(attn)
elif shared_rel_pos is not None:
attn = attn + shared_rel_pos
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentionCl(nn.Module):
""" Channels-last multi-head attention (B, ..., C) """
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
dim_head: int = 32,
bias: bool = True,
expand_first: bool = True,
rel_pos_cls: Callable = None,
attn_drop: float = 0.,
proj_drop: float = 0.
):
super().__init__()
dim_out = dim_out or dim
dim_attn = dim_out if expand_first and dim_out > dim else dim
assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim'
self.num_heads = dim_attn // dim_head
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias)
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim_attn, dim_out, bias=bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
B = x.shape[0]
restore_shape = x.shape[:-1]
q, k, v = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3)
attn = (q @ k.transpose(-2, -1)) * self.scale
if self.rel_pos is not None:
attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos)
elif shared_rel_pos is not None:
attn = attn + shared_rel_pos
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(restore_shape + (-1,))
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma
return x.mul_(gamma) if self.inplace else x * gamma
class LayerScale2d(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma.view(1, -1, 1, 1)
return x.mul_(gamma) if self.inplace else x * gamma
class Downsample2d(nn.Module):
""" A downsample pooling module supporting several maxpool and avgpool modes
* 'max' - MaxPool2d w/ kernel_size 3, stride 2, padding 1
* 'max2' - MaxPool2d w/ kernel_size = stride = 2
* 'avg' - AvgPool2d w/ kernel_size 3, stride 2, padding 1
* 'avg2' - AvgPool2d w/ kernel_size = stride = 2
"""
def __init__(
self,
dim: int,
dim_out: int,
pool_type: str = 'avg2',
bias: bool = True,
):
super().__init__()
assert pool_type in ('max', 'max2', 'avg', 'avg2')
if pool_type == 'max':
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
elif pool_type == 'max2':
self.pool = nn.MaxPool2d(2) # kernel_size == stride == 2
elif pool_type == 'avg':
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)
else:
self.pool = nn.AvgPool2d(2) # kernel_size == stride == 2
if dim != dim_out:
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias)
else:
self.expand = nn.Identity()
def forward(self, x):
x = self.pool(x) # spatial downsample
x = self.expand(x) # expand chs
return x
def _init_transformer(module, name, scheme=''):
if isinstance(module, (nn.Conv2d, nn.Linear)):
if scheme == 'normal':
nn.init.normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif scheme == 'trunc_normal':
trunc_normal_tf_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif scheme == 'xavier_normal':
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
else:
# vit like
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
if 'mlp' in name:
nn.init.normal_(module.bias, std=1e-6)
else:
nn.init.zeros_(module.bias)
class TransformerBlock2d(nn.Module):
""" Transformer block with 2D downsampling
'2D' NCHW tensor layout
Some gains can be seen on GPU using a 1D / CL block, BUT w/ the need to switch back/forth to NCHW
for spatial pooling, the benefit is minimal so ended up using just this variant for CoAt configs.
This impl was faster on TPU w/ PT XLA than the 1D experiment.
"""
def __init__(
self,
dim: int,
dim_out: int,
stride: int = 1,
rel_pos_cls: Callable = None,
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
drop_path: float = 0.,
):
super().__init__()
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
act_layer = get_act_layer(cfg.act_layer)
if stride == 2:
self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias)
self.norm1 = nn.Sequential(OrderedDict([
('norm', norm_layer(dim)),
('down', Downsample2d(dim, dim, pool_type=cfg.pool_type)),
]))
else:
assert dim == dim_out
self.shortcut = nn.Identity()
self.norm1 = norm_layer(dim)
self.attn = Attention2d(
dim,
dim_out,
dim_head=cfg.dim_head,
expand_first=cfg.expand_first,
bias=cfg.attn_bias,
rel_pos_cls=rel_pos_cls,
attn_drop=cfg.attn_drop,
proj_drop=cfg.proj_drop
)
self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = ConvMlp(
in_features=dim_out,
hidden_features=int(dim_out * cfg.expand_ratio),
act_layer=act_layer,
drop=cfg.proj_drop)
self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_transformer, scheme=scheme), self)
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
def _init_conv(module, name, scheme=''):
if isinstance(module, nn.Conv2d):
if scheme == 'normal':
nn.init.normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif scheme == 'trunc_normal':
trunc_normal_tf_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif scheme == 'xavier_normal':
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
else:
# efficientnet like
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
nn.init.zeros_(module.bias)
def num_groups(group_size, channels):
if not group_size: # 0 or None
return 1 # normal conv with 1 group
else:
# NOTE group_size == 1 -> depthwise conv
assert channels % group_size == 0
return channels // group_size
class MbConvBlock(nn.Module):
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
drop_path: float = 0.
):
super(MbConvBlock, self).__init__()
norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps)
mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio)
groups = num_groups(cfg.group_size, mid_chs)
if stride == 2:
self.shortcut = Downsample2d(in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias)
else:
self.shortcut = nn.Identity()
assert cfg.stride_mode in ('pool', '1x1', 'dw')
stride_pool, stride_1, stride_2 = 1, 1, 1
if cfg.stride_mode == 'pool':
# NOTE this is not described in paper, experiment to find faster option that doesn't stride in 1x1
stride_pool, dilation_2 = stride, dilation[1]
# FIXME handle dilation of avg pool
elif cfg.stride_mode == '1x1':
# NOTE I don't like this option described in paper, 1x1 w/ stride throws info away
stride_1, dilation_2 = stride, dilation[1]
else:
stride_2, dilation_2 = stride, dilation[0]
self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act)
if stride_pool > 1:
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type)
else:
self.down = nn.Identity()
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1)
self.norm1 = norm_act_layer(mid_chs)
self.conv2_kxk = create_conv2d(
mid_chs, mid_chs, cfg.kernel_size, stride=stride_2, dilation=dilation_2, groups=groups)
attn_kwargs = {}
if isinstance(cfg.attn_layer, str):
if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca':
attn_kwargs['act_layer'] = cfg.attn_act_layer
attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs))
# two different orderings for SE and norm2 (due to some weights and trials using SE before norm2)
if cfg.attn_early:
self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs)
self.norm2 = norm_act_layer(mid_chs)
self.se = None
else:
self.se_early = None
self.norm2 = norm_act_layer(mid_chs)
self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs)
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
shortcut = self.shortcut(x)
x = self.pre_norm(x)
x = self.down(x)
# 1x1 expansion conv & norm-act
x = self.conv1_1x1(x)
x = self.norm1(x)
# depthwise / grouped 3x3 conv w/ SE (or other) channel attention & norm-act
x = self.conv2_kxk(x)
if self.se_early is not None:
x = self.se_early(x)
x = self.norm2(x)
if self.se is not None:
x = self.se(x)
# 1x1 linear projection to output width
x = self.conv3_1x1(x)
x = self.drop_path(x) + shortcut
return x
class ConvNeXtBlock(nn.Module):
""" ConvNeXt Block
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 7,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
conv_mlp: bool = True,
drop_path: float = 0.
):
super().__init__()
out_chs = out_chs or in_chs
act_layer = get_act_layer(cfg.act_layer)
if conv_mlp:
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
mlp_layer = ConvMlp
else:
assert 'layernorm' in cfg.norm_layer
norm_layer = LayerNorm
mlp_layer = Mlp
self.use_conv_mlp = conv_mlp
if stride == 2:
self.shortcut = Downsample2d(in_chs, out_chs)
elif in_chs != out_chs:
self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias)
else:
self.shortcut = nn.Identity()
assert cfg.stride_mode in ('pool', 'dw')
stride_pool, stride_dw = 1, 1
# FIXME handle dilation?
if cfg.stride_mode == 'pool':
stride_pool = stride
else:
stride_dw = stride
if stride_pool == 2:
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type)
else:
self.down = nn.Identity()
self.conv_dw = create_conv2d(
in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1],
depthwise=True, bias=cfg.output_bias)
self.norm = norm_layer(out_chs)
self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer)
if conv_mlp:
self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity()
else:
self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = self.shortcut(x)
x = self.down(x)
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
x = self.ls(x)
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
x = self.ls(x)
x = x.permute(0, 3, 1, 2)
x = self.drop_path(x) + shortcut
return x
def window_partition(x, window_size: List[int]):
B, H, W, C = x.shape
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})')
_assert(W % window_size[1] == 0, '')
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size: List[int], img_size: List[int]):
H, W = img_size
C = windows.shape[-1]
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
def grid_partition(x, grid_size: List[int]):
B, H, W, C = x.shape
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}')
_assert(W % grid_size[1] == 0, '')
x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C)
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def grid_reverse(windows, grid_size: List[int], img_size: List[int]):
H, W = img_size
C = windows.shape[-1]
x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C)
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C)
return x
def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size):
rel_pos_cls = None
if cfg.rel_pos_type == 'mlp':
rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim)
elif cfg.rel_pos_type == 'bias':
rel_pos_cls = partial(RelPosBias, window_size=window_size)
return rel_pos_cls
class PartitionAttentionCl(nn.Module):
""" Grid or Block partition + Attn + FFN.
NxC 'channels last' tensor layout.
"""
def __init__(
self,
dim: int,
partition_type: str = 'block',
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
drop_path: float = 0.,
):
super().__init__()
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last
act_layer = get_act_layer(cfg.act_layer)
self.partition_block = partition_type == 'block'
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size)
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
self.norm1 = norm_layer(dim)
self.attn = AttentionCl(
dim,
dim,
dim_head=cfg.dim_head,
bias=cfg.attn_bias,
rel_pos_cls=rel_pos_cls,
attn_drop=cfg.attn_drop,
proj_drop=cfg.proj_drop,
)
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * cfg.expand_ratio),
act_layer=act_layer,
drop=cfg.proj_drop)
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def _partition_attn(self, x):
img_size = x.shape[1:3]
if self.partition_block:
partitioned = window_partition(x, self.partition_size)
else:
partitioned = grid_partition(x, self.partition_size)
partitioned = self.attn(partitioned)
if self.partition_block:
x = window_reverse(partitioned, self.partition_size, img_size)
else:
x = grid_reverse(partitioned, self.partition_size, img_size)
return x
def forward(self, x):
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class ParallelPartitionAttention(nn.Module):
""" Experimental. Grid and Block partition + single FFN
NxC tensor layout.
"""
def __init__(
self,
dim: int,
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
drop_path: float = 0.,
):
super().__init__()
assert dim % 2 == 0
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last
act_layer = get_act_layer(cfg.act_layer)
assert cfg.window_size == cfg.grid_size
self.partition_size = to_2tuple(cfg.window_size)
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
self.norm1 = norm_layer(dim)
self.attn_block = AttentionCl(
dim,
dim // 2,
dim_head=cfg.dim_head,
bias=cfg.attn_bias,
rel_pos_cls=rel_pos_cls,
attn_drop=cfg.attn_drop,
proj_drop=cfg.proj_drop,
)
self.attn_grid = AttentionCl(
dim,
dim // 2,
dim_head=cfg.dim_head,
bias=cfg.attn_bias,
rel_pos_cls=rel_pos_cls,
attn_drop=cfg.attn_drop,
proj_drop=cfg.proj_drop,
)
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * cfg.expand_ratio),
out_features=dim,
act_layer=act_layer,
drop=cfg.proj_drop)
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def _partition_attn(self, x):
img_size = x.shape[1:3]
partitioned_block = window_partition(x, self.partition_size)
partitioned_block = self.attn_block(partitioned_block)
x_window = window_reverse(partitioned_block, self.partition_size, img_size)
partitioned_grid = grid_partition(x, self.partition_size)
partitioned_grid = self.attn_grid(partitioned_grid)
x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size)
return torch.cat([x_window, x_grid], dim=-1)
def forward(self, x):
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
def window_partition_nchw(x, window_size: List[int]):
B, C, H, W = x.shape
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})')
_assert(W % window_size[1] == 0, '')
x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1])
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1])
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]):
H, W = img_size
C = windows.shape[1]
x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1])
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W)
return x
def grid_partition_nchw(x, grid_size: List[int]):
B, C, H, W = x.shape
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}')
_assert(W % grid_size[1] == 0, '')
x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1])
windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1])
return windows
@register_notrace_function # reason: int argument is a Proxy
def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]):
H, W = img_size
C = windows.shape[1]
x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1])
x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W)
return x
class PartitionAttention2d(nn.Module):
""" Grid or Block partition + Attn + FFN
'2D' NCHW tensor layout.
"""
def __init__(
self,
dim: int,
partition_type: str = 'block',
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
drop_path: float = 0.,
):
super().__init__()
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) # NOTE this block is channels-last
act_layer = get_act_layer(cfg.act_layer)
self.partition_block = partition_type == 'block'
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size)
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
self.norm1 = norm_layer(dim)
self.attn = Attention2d(
dim,
dim,
dim_head=cfg.dim_head,
bias=cfg.attn_bias,
rel_pos_cls=rel_pos_cls,
attn_drop=cfg.attn_drop,
proj_drop=cfg.proj_drop,
)
self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = ConvMlp(
in_features=dim,
hidden_features=int(dim * cfg.expand_ratio),
act_layer=act_layer,
drop=cfg.proj_drop)
self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def _partition_attn(self, x):
img_size = x.shape[-2:]
if self.partition_block:
partitioned = window_partition_nchw(x, self.partition_size)
else:
partitioned = grid_partition_nchw(x, self.partition_size)
partitioned = self.attn(partitioned)
if self.partition_block:
x = window_reverse_nchw(partitioned, self.partition_size, img_size)
else:
x = grid_reverse_nchw(partitioned, self.partition_size, img_size)
return x
def forward(self, x):
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class MaxxVitBlock(nn.Module):
""" MaxVit conv, window partition + FFN , grid partition + FFN
"""
def __init__(
self,
dim: int,
dim_out: int,
stride: int = 1,
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
use_nchw_attn: bool = False, # FIXME move to cfg? True is ~20-30% faster on TPU, 5-10% slower on GPU
drop_path: float = 0.,
):
super().__init__()
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)
attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path)
partition_layer = PartitionAttention2d if use_nchw_attn else PartitionAttentionCl
self.nchw_attn = use_nchw_attn
self.attn_block = partition_layer(**attn_kwargs)
self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs)
def init_weights(self, scheme=''):
named_apply(partial(_init_transformer, scheme=scheme), self.attn_block)
named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid)
named_apply(partial(_init_conv, scheme=scheme), self.conv)
def forward(self, x):
# NCHW format
x = self.conv(x)
if not self.nchw_attn:
x = x.permute(0, 2, 3, 1) # to NHWC (channels-last)
x = self.attn_block(x)
x = self.attn_grid(x)
if not self.nchw_attn:
x = x.permute(0, 3, 1, 2) # back to NCHW
return x
class ParallelMaxxVitBlock(nn.Module):
""" MaxVit block with parallel cat(window + grid), one FF
Experimental timm block.
"""
def __init__(
self,
dim,
dim_out,
stride=1,
num_conv=2,
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
drop_path=0.,
):
super().__init__()
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
if num_conv > 1:
convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)]
convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1)
self.conv = nn.Sequential(*convs)
else:
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)
self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path)
def init_weights(self, scheme=''):
named_apply(partial(_init_transformer, scheme=scheme), self.attn)
named_apply(partial(_init_conv, scheme=scheme), self.conv)
def forward(self, x):
x = self.conv(x)
x = x.permute(0, 2, 3, 1)
x = self.attn(x)
x = x.permute(0, 3, 1, 2)
return x
class MaxxVitStage(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 2,
depth: int = 4,
feat_size: Tuple[int, int] = (14, 14),
block_types: Union[str, Tuple[str]] = 'C',
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
drop_path: Union[float, List[float]] = 0.,
):
super().__init__()
self.grad_checkpointing = False
block_types = extend_tuple(block_types, depth)
blocks = []
for i, t in enumerate(block_types):
block_stride = stride if i == 0 else 1
assert t in ('C', 'T', 'M', 'PM')
if t == 'C':
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
blocks += [conv_cls(
in_chs,
out_chs,
stride=block_stride,
cfg=conv_cfg,
drop_path=drop_path[i],
)]
elif t == 'T':
rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size)
blocks += [TransformerBlock2d(
in_chs,
out_chs,
stride=block_stride,
rel_pos_cls=rel_pos_cls,
cfg=transformer_cfg,
drop_path=drop_path[i],
)]
elif t == 'M':
blocks += [MaxxVitBlock(
in_chs,
out_chs,
stride=block_stride,
conv_cfg=conv_cfg,
transformer_cfg=transformer_cfg,
drop_path=drop_path[i],
)]
elif t == 'PM':
blocks += [ParallelMaxxVitBlock(
in_chs,
out_chs,
stride=block_stride,
conv_cfg=conv_cfg,
transformer_cfg=transformer_cfg,
drop_path=drop_path[i],
)]
in_chs = out_chs
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class Stem(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
act_layer: str = 'gelu',
norm_layer: str = 'batchnorm2d',
norm_eps: float = 1e-5,
):
super().__init__()
if not isinstance(out_chs, (list, tuple)):
out_chs = to_2tuple(out_chs)
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
self.out_chs = out_chs[-1]
self.stride = 2
self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2)
self.norm1 = norm_act_layer(out_chs[0])
self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1)
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.conv2(x)
return x
def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]):
if cfg.window_size is not None:
assert cfg.grid_size
return cfg
partition_size = img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio
cfg = replace(cfg, window_size=partition_size, grid_size=partition_size)
return cfg
class MaxxVit(nn.Module):
""" CoaTNet + MaxVit base model.
Highly configurable for different block compositions, tensor layouts, pooling types.
"""
def __init__(
self,
cfg: MaxxVitCfg,
img_size: Union[int, Tuple[int, int]] = 224,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
drop_rate: float = 0.,
drop_path_rate: float = 0.
):
super().__init__()
img_size = to_2tuple(img_size)
transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size)
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = cfg.embed_dim[-1]
self.embed_dim = cfg.embed_dim
self.drop_rate = drop_rate
self.grad_checkpointing = False
self.stem = Stem(
in_chs=in_chans,
out_chs=cfg.stem_width,
act_layer=cfg.conv_cfg.act_layer,
norm_layer=cfg.conv_cfg.norm_layer,
norm_eps=cfg.conv_cfg.norm_eps,
)
stride = self.stem.stride
feat_size = tuple([i // s for i, s in zip(img_size, to_2tuple(stride))])
num_stages = len(cfg.embed_dim)
assert len(cfg.depths) == num_stages
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)]
in_chs = self.stem.out_chs
stages = []
for i in range(num_stages):
stage_stride = 2
out_chs = cfg.embed_dim[i]
feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size])
stages += [MaxxVitStage(
in_chs,
out_chs,
depth=cfg.depths[i],
block_types=cfg.block_type[i],
conv_cfg=cfg.conv_cfg,
transformer_cfg=transformer_cfg,
feat_size=feat_size,
drop_path=dpr[i],
)]
stride *= stage_stride
in_chs = out_chs
self.stages = nn.Sequential(*stages)
final_norm_layer = get_norm_layer(cfg.transformer_cfg.norm_layer)
self.norm = final_norm_layer(self.num_features, eps=cfg.transformer_cfg.norm_eps)
# Classifier head
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
# Weight init (default PyTorch init works well for AdamW if scheme not set)
assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff')
if cfg.weight_init:
named_apply(partial(self._init_weights, scheme=cfg.weight_init), self)
def _init_weights(self, module, name, scheme=''):
if hasattr(module, 'init_weights'):
try:
module.init_weights(scheme=scheme)
except TypeError:
module.init_weights()
@torch.jit.ignore
def no_weight_decay(self):
return {
k for k, _ in self.named_parameters()
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem', # stem and embed
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is None:
global_pool = self.head.global_pool.pool_type
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs):
return build_model_with_cfg(
MaxxVit, variant, pretrained,
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
feature_cfg=dict(flatten_sequential=True),
**kwargs)
@register_model
def coatnet_pico_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_nano_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_0_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_1_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_2_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_3_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_bn_0_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_nano_cc_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs)
@register_model
def coatnext_nano_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_0_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_1_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_2_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_3_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_4_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs)
@register_model
def coatnet_5_224(pretrained=False, **kwargs):
return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_pico_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_nano_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_tiny_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_tiny_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_tiny_pm_256(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs)
@register_model
def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs):
return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs)
@register_model
def maxvit_tiny_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_tiny_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_small_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_small_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_base_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_base_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_large_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_large_224', pretrained=pretrained, **kwargs)
@register_model
def maxvit_xlarge_224(pretrained=False, **kwargs):
return _create_maxxvit('maxvit_xlarge_224', pretrained=pretrained, **kwargs)