Spaces:
Running
Running
""" Normalization Free Nets. NFNet, NF-RegNet, NF-ResNet (pre-activation) Models | |
Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
Paper: `High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
Official Deepmind JAX code: https://github.com/deepmind/deepmind-research/tree/master/nfnets | |
Status: | |
* These models are a work in progress, experiments ongoing. | |
* Pretrained weights for two models so far, more to come. | |
* Model details updated to closer match official JAX code now that it's released | |
* NF-ResNet, NF-RegNet-B, and NFNet-F models supported | |
Hacked together by / copyright Ross Wightman, 2021. | |
""" | |
import math | |
from dataclasses import dataclass, field | |
from collections import OrderedDict | |
from typing import Tuple, Optional | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .fx_features import register_notrace_module | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .registry import register_model | |
from .layers import ClassifierHead, DropPath, AvgPool2dSame, ScaledStdConv2d, ScaledStdConv2dSame,\ | |
get_act_layer, get_act_fn, get_attn, make_divisible | |
def _dcfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.9, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.conv1', 'classifier': 'head.fc', | |
**kwargs | |
} | |
default_cfgs = dict( | |
dm_nfnet_f0=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f0-604f9c3a.pth', | |
pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), crop_pct=.9), | |
dm_nfnet_f1=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f1-fc540f82.pth', | |
pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320), crop_pct=0.91), | |
dm_nfnet_f2=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f2-89875923.pth', | |
pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352), crop_pct=0.92), | |
dm_nfnet_f3=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f3-d74ab3aa.pth', | |
pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416), crop_pct=0.94), | |
dm_nfnet_f4=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f4-0ac5b10b.pth', | |
pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512), crop_pct=0.951), | |
dm_nfnet_f5=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f5-ecb20ab1.pth', | |
pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544), crop_pct=0.954), | |
dm_nfnet_f6=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f6-e0f12116.pth', | |
pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576), crop_pct=0.956), | |
nfnet_f0=_dcfg( | |
url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256)), | |
nfnet_f1=_dcfg( | |
url='', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320)), | |
nfnet_f2=_dcfg( | |
url='', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352)), | |
nfnet_f3=_dcfg( | |
url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416)), | |
nfnet_f4=_dcfg( | |
url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512)), | |
nfnet_f5=_dcfg( | |
url='', pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544)), | |
nfnet_f6=_dcfg( | |
url='', pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576)), | |
nfnet_f7=_dcfg( | |
url='', pool_size=(15, 15), input_size=(3, 480, 480), test_input_size=(3, 608, 608)), | |
nfnet_l0=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nfnet_l0_ra2-45c6688d.pth', | |
pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), crop_pct=1.0), | |
eca_nfnet_l0=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l0_ra2-e3e9ac50.pth', | |
hf_hub_id='timm/eca_nfnet_l0', | |
pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), crop_pct=1.0), | |
eca_nfnet_l1=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l1_ra2-7dce93cd.pth', | |
pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 320, 320), crop_pct=1.0), | |
eca_nfnet_l2=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l2_ra3-da781a61.pth', | |
pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), crop_pct=1.0), | |
eca_nfnet_l3=_dcfg( | |
url='', | |
pool_size=(11, 11), input_size=(3, 352, 352), test_input_size=(3, 448, 448), crop_pct=1.0), | |
nf_regnet_b0=_dcfg( | |
url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), first_conv='stem.conv'), | |
nf_regnet_b1=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_regnet_b1_256_ra2-ad85cfef.pth', | |
pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), first_conv='stem.conv'), # NOT to paper spec | |
nf_regnet_b2=_dcfg( | |
url='', pool_size=(8, 8), input_size=(3, 240, 240), test_input_size=(3, 272, 272), first_conv='stem.conv'), | |
nf_regnet_b3=_dcfg( | |
url='', pool_size=(9, 9), input_size=(3, 288, 288), test_input_size=(3, 320, 320), first_conv='stem.conv'), | |
nf_regnet_b4=_dcfg( | |
url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), first_conv='stem.conv'), | |
nf_regnet_b5=_dcfg( | |
url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 456, 456), first_conv='stem.conv'), | |
nf_resnet26=_dcfg(url='', first_conv='stem.conv'), | |
nf_resnet50=_dcfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_resnet50_ra2-9f236009.pth', | |
pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), crop_pct=0.94, first_conv='stem.conv'), | |
nf_resnet101=_dcfg(url='', first_conv='stem.conv'), | |
nf_seresnet26=_dcfg(url='', first_conv='stem.conv'), | |
nf_seresnet50=_dcfg(url='', first_conv='stem.conv'), | |
nf_seresnet101=_dcfg(url='', first_conv='stem.conv'), | |
nf_ecaresnet26=_dcfg(url='', first_conv='stem.conv'), | |
nf_ecaresnet50=_dcfg(url='', first_conv='stem.conv'), | |
nf_ecaresnet101=_dcfg(url='', first_conv='stem.conv'), | |
) | |
class NfCfg: | |
depths: Tuple[int, int, int, int] | |
channels: Tuple[int, int, int, int] | |
alpha: float = 0.2 | |
stem_type: str = '3x3' | |
stem_chs: Optional[int] = None | |
group_size: Optional[int] = None | |
attn_layer: Optional[str] = None | |
attn_kwargs: dict = None | |
attn_gain: float = 2.0 # NF correction gain to apply if attn layer is used | |
width_factor: float = 1.0 | |
bottle_ratio: float = 0.5 | |
num_features: int = 0 # num out_channels for final conv, no final_conv if 0 | |
ch_div: int = 8 # round channels % 8 == 0 to keep tensor-core use optimal | |
reg: bool = False # enables EfficientNet-like options used in RegNet variants, expand from in_chs, se in middle | |
extra_conv: bool = False # extra 3x3 bottleneck convolution for NFNet models | |
gamma_in_act: bool = False | |
same_padding: bool = False | |
std_conv_eps: float = 1e-5 | |
skipinit: bool = False # disabled by default, non-trivial performance impact | |
zero_init_fc: bool = False | |
act_layer: str = 'silu' | |
def _nfres_cfg( | |
depths, channels=(256, 512, 1024, 2048), group_size=None, act_layer='relu', attn_layer=None, attn_kwargs=None): | |
attn_kwargs = attn_kwargs or {} | |
cfg = NfCfg( | |
depths=depths, channels=channels, stem_type='7x7_pool', stem_chs=64, bottle_ratio=0.25, | |
group_size=group_size, act_layer=act_layer, attn_layer=attn_layer, attn_kwargs=attn_kwargs) | |
return cfg | |
def _nfreg_cfg(depths, channels=(48, 104, 208, 440)): | |
num_features = 1280 * channels[-1] // 440 | |
attn_kwargs = dict(rd_ratio=0.5) | |
cfg = NfCfg( | |
depths=depths, channels=channels, stem_type='3x3', group_size=8, width_factor=0.75, bottle_ratio=2.25, | |
num_features=num_features, reg=True, attn_layer='se', attn_kwargs=attn_kwargs) | |
return cfg | |
def _nfnet_cfg( | |
depths, channels=(256, 512, 1536, 1536), group_size=128, bottle_ratio=0.5, feat_mult=2., | |
act_layer='gelu', attn_layer='se', attn_kwargs=None): | |
num_features = int(channels[-1] * feat_mult) | |
attn_kwargs = attn_kwargs if attn_kwargs is not None else dict(rd_ratio=0.5) | |
cfg = NfCfg( | |
depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=group_size, | |
bottle_ratio=bottle_ratio, extra_conv=True, num_features=num_features, act_layer=act_layer, | |
attn_layer=attn_layer, attn_kwargs=attn_kwargs) | |
return cfg | |
def _dm_nfnet_cfg(depths, channels=(256, 512, 1536, 1536), act_layer='gelu', skipinit=True): | |
cfg = NfCfg( | |
depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=128, | |
bottle_ratio=0.5, extra_conv=True, gamma_in_act=True, same_padding=True, skipinit=skipinit, | |
num_features=int(channels[-1] * 2.0), act_layer=act_layer, attn_layer='se', attn_kwargs=dict(rd_ratio=0.5)) | |
return cfg | |
model_cfgs = dict( | |
# NFNet-F models w/ GELU compatible with DeepMind weights | |
dm_nfnet_f0=_dm_nfnet_cfg(depths=(1, 2, 6, 3)), | |
dm_nfnet_f1=_dm_nfnet_cfg(depths=(2, 4, 12, 6)), | |
dm_nfnet_f2=_dm_nfnet_cfg(depths=(3, 6, 18, 9)), | |
dm_nfnet_f3=_dm_nfnet_cfg(depths=(4, 8, 24, 12)), | |
dm_nfnet_f4=_dm_nfnet_cfg(depths=(5, 10, 30, 15)), | |
dm_nfnet_f5=_dm_nfnet_cfg(depths=(6, 12, 36, 18)), | |
dm_nfnet_f6=_dm_nfnet_cfg(depths=(7, 14, 42, 21)), | |
# NFNet-F models w/ GELU | |
nfnet_f0=_nfnet_cfg(depths=(1, 2, 6, 3)), | |
nfnet_f1=_nfnet_cfg(depths=(2, 4, 12, 6)), | |
nfnet_f2=_nfnet_cfg(depths=(3, 6, 18, 9)), | |
nfnet_f3=_nfnet_cfg(depths=(4, 8, 24, 12)), | |
nfnet_f4=_nfnet_cfg(depths=(5, 10, 30, 15)), | |
nfnet_f5=_nfnet_cfg(depths=(6, 12, 36, 18)), | |
nfnet_f6=_nfnet_cfg(depths=(7, 14, 42, 21)), | |
nfnet_f7=_nfnet_cfg(depths=(8, 16, 48, 24)), | |
# Experimental 'light' versions of NFNet-F that are little leaner | |
nfnet_l0=_nfnet_cfg( | |
depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, | |
attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'), | |
eca_nfnet_l0=_nfnet_cfg( | |
depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, | |
attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), | |
eca_nfnet_l1=_nfnet_cfg( | |
depths=(2, 4, 12, 6), feat_mult=2, group_size=64, bottle_ratio=0.25, | |
attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), | |
eca_nfnet_l2=_nfnet_cfg( | |
depths=(3, 6, 18, 9), feat_mult=2, group_size=64, bottle_ratio=0.25, | |
attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), | |
eca_nfnet_l3=_nfnet_cfg( | |
depths=(4, 8, 24, 12), feat_mult=2, group_size=64, bottle_ratio=0.25, | |
attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), | |
# EffNet influenced RegNet defs. | |
# NOTE: These aren't quite the official ver, ch_div=1 must be set for exact ch counts. I round to ch_div=8. | |
nf_regnet_b0=_nfreg_cfg(depths=(1, 3, 6, 6)), | |
nf_regnet_b1=_nfreg_cfg(depths=(2, 4, 7, 7)), | |
nf_regnet_b2=_nfreg_cfg(depths=(2, 4, 8, 8), channels=(56, 112, 232, 488)), | |
nf_regnet_b3=_nfreg_cfg(depths=(2, 5, 9, 9), channels=(56, 128, 248, 528)), | |
nf_regnet_b4=_nfreg_cfg(depths=(2, 6, 11, 11), channels=(64, 144, 288, 616)), | |
nf_regnet_b5=_nfreg_cfg(depths=(3, 7, 14, 14), channels=(80, 168, 336, 704)), | |
# FIXME add B6-B8 | |
# ResNet (preact, D style deep stem/avg down) defs | |
nf_resnet26=_nfres_cfg(depths=(2, 2, 2, 2)), | |
nf_resnet50=_nfres_cfg(depths=(3, 4, 6, 3)), | |
nf_resnet101=_nfres_cfg(depths=(3, 4, 23, 3)), | |
nf_seresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), | |
nf_seresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), | |
nf_seresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), | |
nf_ecaresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='eca', attn_kwargs=dict()), | |
nf_ecaresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='eca', attn_kwargs=dict()), | |
nf_ecaresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='eca', attn_kwargs=dict()), | |
) | |
class GammaAct(nn.Module): | |
def __init__(self, act_type='relu', gamma: float = 1.0, inplace=False): | |
super().__init__() | |
self.act_fn = get_act_fn(act_type) | |
self.gamma = gamma | |
self.inplace = inplace | |
def forward(self, x): | |
return self.act_fn(x, inplace=self.inplace).mul_(self.gamma) | |
def act_with_gamma(act_type, gamma: float = 1.): | |
def _create(inplace=False): | |
return GammaAct(act_type, gamma=gamma, inplace=inplace) | |
return _create | |
class DownsampleAvg(nn.Module): | |
def __init__( | |
self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, conv_layer=ScaledStdConv2d): | |
""" AvgPool Downsampling as in 'D' ResNet variants. Support for dilation.""" | |
super(DownsampleAvg, self).__init__() | |
avg_stride = stride if dilation == 1 else 1 | |
if stride > 1 or dilation > 1: | |
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d | |
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) | |
else: | |
self.pool = nn.Identity() | |
self.conv = conv_layer(in_chs, out_chs, 1, stride=1) | |
def forward(self, x): | |
return self.conv(self.pool(x)) | |
# reason: mul_ causes FX to drop a relevant node. https://github.com/pytorch/pytorch/issues/68301 | |
class NormFreeBlock(nn.Module): | |
"""Normalization-Free pre-activation block. | |
""" | |
def __init__( | |
self, in_chs, out_chs=None, stride=1, dilation=1, first_dilation=None, | |
alpha=1.0, beta=1.0, bottle_ratio=0.25, group_size=None, ch_div=1, reg=True, extra_conv=False, | |
skipinit=False, attn_layer=None, attn_gain=2.0, act_layer=None, conv_layer=None, drop_path_rate=0.): | |
super().__init__() | |
first_dilation = first_dilation or dilation | |
out_chs = out_chs or in_chs | |
# RegNet variants scale bottleneck from in_chs, otherwise scale from out_chs like ResNet | |
mid_chs = make_divisible(in_chs * bottle_ratio if reg else out_chs * bottle_ratio, ch_div) | |
groups = 1 if not group_size else mid_chs // group_size | |
if group_size and group_size % ch_div == 0: | |
mid_chs = group_size * groups # correct mid_chs if group_size divisible by ch_div, otherwise error | |
self.alpha = alpha | |
self.beta = beta | |
self.attn_gain = attn_gain | |
if in_chs != out_chs or stride != 1 or dilation != first_dilation: | |
self.downsample = DownsampleAvg( | |
in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, conv_layer=conv_layer) | |
else: | |
self.downsample = None | |
self.act1 = act_layer() | |
self.conv1 = conv_layer(in_chs, mid_chs, 1) | |
self.act2 = act_layer(inplace=True) | |
self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) | |
if extra_conv: | |
self.act2b = act_layer(inplace=True) | |
self.conv2b = conv_layer(mid_chs, mid_chs, 3, stride=1, dilation=dilation, groups=groups) | |
else: | |
self.act2b = None | |
self.conv2b = None | |
if reg and attn_layer is not None: | |
self.attn = attn_layer(mid_chs) # RegNet blocks apply attn btw conv2 & 3 | |
else: | |
self.attn = None | |
self.act3 = act_layer() | |
self.conv3 = conv_layer(mid_chs, out_chs, 1, gain_init=1. if skipinit else 0.) | |
if not reg and attn_layer is not None: | |
self.attn_last = attn_layer(out_chs) # ResNet blocks apply attn after conv3 | |
else: | |
self.attn_last = None | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() | |
self.skipinit_gain = nn.Parameter(torch.tensor(0.)) if skipinit else None | |
def forward(self, x): | |
out = self.act1(x) * self.beta | |
# shortcut branch | |
shortcut = x | |
if self.downsample is not None: | |
shortcut = self.downsample(out) | |
# residual branch | |
out = self.conv1(out) | |
out = self.conv2(self.act2(out)) | |
if self.conv2b is not None: | |
out = self.conv2b(self.act2b(out)) | |
if self.attn is not None: | |
out = self.attn_gain * self.attn(out) | |
out = self.conv3(self.act3(out)) | |
if self.attn_last is not None: | |
out = self.attn_gain * self.attn_last(out) | |
out = self.drop_path(out) | |
if self.skipinit_gain is not None: | |
out.mul_(self.skipinit_gain) # this slows things down more than expected, TBD | |
out = out * self.alpha + shortcut | |
return out | |
def create_stem(in_chs, out_chs, stem_type='', conv_layer=None, act_layer=None, preact_feature=True): | |
stem_stride = 2 | |
stem_feature = dict(num_chs=out_chs, reduction=2, module='stem.conv') | |
stem = OrderedDict() | |
assert stem_type in ('', 'deep', 'deep_tiered', 'deep_quad', '3x3', '7x7', 'deep_pool', '3x3_pool', '7x7_pool') | |
if 'deep' in stem_type: | |
if 'quad' in stem_type: | |
# 4 deep conv stack as in NFNet-F models | |
assert not 'pool' in stem_type | |
stem_chs = (out_chs // 8, out_chs // 4, out_chs // 2, out_chs) | |
strides = (2, 1, 1, 2) | |
stem_stride = 4 | |
stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv3') | |
else: | |
if 'tiered' in stem_type: | |
stem_chs = (3 * out_chs // 8, out_chs // 2, out_chs) # 'T' resnets in resnet.py | |
else: | |
stem_chs = (out_chs // 2, out_chs // 2, out_chs) # 'D' ResNets | |
strides = (2, 1, 1) | |
stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv2') | |
last_idx = len(stem_chs) - 1 | |
for i, (c, s) in enumerate(zip(stem_chs, strides)): | |
stem[f'conv{i + 1}'] = conv_layer(in_chs, c, kernel_size=3, stride=s) | |
if i != last_idx: | |
stem[f'act{i + 2}'] = act_layer(inplace=True) | |
in_chs = c | |
elif '3x3' in stem_type: | |
# 3x3 stem conv as in RegNet | |
stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=3, stride=2) | |
else: | |
# 7x7 stem conv as in ResNet | |
stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) | |
if 'pool' in stem_type: | |
stem['pool'] = nn.MaxPool2d(3, stride=2, padding=1) | |
stem_stride = 4 | |
return nn.Sequential(stem), stem_stride, stem_feature | |
# from https://github.com/deepmind/deepmind-research/tree/master/nfnets | |
_nonlin_gamma = dict( | |
identity=1.0, | |
celu=1.270926833152771, | |
elu=1.2716004848480225, | |
gelu=1.7015043497085571, | |
leaky_relu=1.70590341091156, | |
log_sigmoid=1.9193484783172607, | |
log_softmax=1.0002083778381348, | |
relu=1.7139588594436646, | |
relu6=1.7131484746932983, | |
selu=1.0008515119552612, | |
sigmoid=4.803835391998291, | |
silu=1.7881293296813965, | |
softsign=2.338853120803833, | |
softplus=1.9203323125839233, | |
tanh=1.5939117670059204, | |
) | |
class NormFreeNet(nn.Module): | |
""" Normalization-Free Network | |
As described in : | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
and | |
`High-Performance Large-Scale Image Recognition Without Normalization` - https://arxiv.org/abs/2102.06171 | |
This model aims to cover both the NFRegNet-Bx models as detailed in the paper's code snippets and | |
the (preact) ResNet models described earlier in the paper. | |
There are a few differences: | |
* channels are rounded to be divisible by 8 by default (keep tensor core kernels happy), | |
this changes channel dim and param counts slightly from the paper models | |
* activation correcting gamma constants are moved into the ScaledStdConv as it has less performance | |
impact in PyTorch when done with the weight scaling there. This likely wasn't a concern in the JAX impl. | |
* a config option `gamma_in_act` can be enabled to not apply gamma in StdConv as described above, but | |
apply it in each activation. This is slightly slower, numerically different, but matches official impl. | |
* skipinit is disabled by default, it seems to have a rather drastic impact on GPU memory use and throughput | |
for what it is/does. Approx 8-10% throughput loss. | |
""" | |
def __init__( | |
self, cfg: NfCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, | |
drop_rate=0., drop_path_rate=0. | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.grad_checkpointing = False | |
assert cfg.act_layer in _nonlin_gamma, f"Please add non-linearity constants for activation ({cfg.act_layer})." | |
conv_layer = ScaledStdConv2dSame if cfg.same_padding else ScaledStdConv2d | |
if cfg.gamma_in_act: | |
act_layer = act_with_gamma(cfg.act_layer, gamma=_nonlin_gamma[cfg.act_layer]) | |
conv_layer = partial(conv_layer, eps=cfg.std_conv_eps) | |
else: | |
act_layer = get_act_layer(cfg.act_layer) | |
conv_layer = partial(conv_layer, gamma=_nonlin_gamma[cfg.act_layer], eps=cfg.std_conv_eps) | |
attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None | |
stem_chs = make_divisible((cfg.stem_chs or cfg.channels[0]) * cfg.width_factor, cfg.ch_div) | |
self.stem, stem_stride, stem_feat = create_stem( | |
in_chans, stem_chs, cfg.stem_type, conv_layer=conv_layer, act_layer=act_layer) | |
self.feature_info = [stem_feat] | |
drop_path_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] | |
prev_chs = stem_chs | |
net_stride = stem_stride | |
dilation = 1 | |
expected_var = 1.0 | |
stages = [] | |
for stage_idx, stage_depth in enumerate(cfg.depths): | |
stride = 1 if stage_idx == 0 and stem_stride > 2 else 2 | |
if net_stride >= output_stride and stride > 1: | |
dilation *= stride | |
stride = 1 | |
net_stride *= stride | |
first_dilation = 1 if dilation in (1, 2) else 2 | |
blocks = [] | |
for block_idx in range(cfg.depths[stage_idx]): | |
first_block = block_idx == 0 and stage_idx == 0 | |
out_chs = make_divisible(cfg.channels[stage_idx] * cfg.width_factor, cfg.ch_div) | |
blocks += [NormFreeBlock( | |
in_chs=prev_chs, out_chs=out_chs, | |
alpha=cfg.alpha, | |
beta=1. / expected_var ** 0.5, | |
stride=stride if block_idx == 0 else 1, | |
dilation=dilation, | |
first_dilation=first_dilation, | |
group_size=cfg.group_size, | |
bottle_ratio=1. if cfg.reg and first_block else cfg.bottle_ratio, | |
ch_div=cfg.ch_div, | |
reg=cfg.reg, | |
extra_conv=cfg.extra_conv, | |
skipinit=cfg.skipinit, | |
attn_layer=attn_layer, | |
attn_gain=cfg.attn_gain, | |
act_layer=act_layer, | |
conv_layer=conv_layer, | |
drop_path_rate=drop_path_rates[stage_idx][block_idx], | |
)] | |
if block_idx == 0: | |
expected_var = 1. # expected var is reset after first block of each stage | |
expected_var += cfg.alpha ** 2 # Even if reset occurs, increment expected variance | |
first_dilation = dilation | |
prev_chs = out_chs | |
self.feature_info += [dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')] | |
stages += [nn.Sequential(*blocks)] | |
self.stages = nn.Sequential(*stages) | |
if cfg.num_features: | |
# The paper NFRegNet models have an EfficientNet-like final head convolution. | |
self.num_features = make_divisible(cfg.width_factor * cfg.num_features, cfg.ch_div) | |
self.final_conv = conv_layer(prev_chs, self.num_features, 1) | |
self.feature_info[-1] = dict(num_chs=self.num_features, reduction=net_stride, module=f'final_conv') | |
else: | |
self.num_features = prev_chs | |
self.final_conv = nn.Identity() | |
self.final_act = act_layer(inplace=cfg.num_features > 0) | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
for n, m in self.named_modules(): | |
if 'fc' in n and isinstance(m, nn.Linear): | |
if cfg.zero_init_fc: | |
nn.init.zeros_(m.weight) | |
else: | |
nn.init.normal_(m.weight, 0., .01) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='linear') | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', | |
blocks=[ | |
(r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None), | |
(r'^final_conv', (99999,)) | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
def forward_features(self, x): | |
x = self.stem(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.stages, x) | |
else: | |
x = self.stages(x) | |
x = self.final_conv(x) | |
x = self.final_act(x) | |
return x | |
def forward_head(self, x): | |
return self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_normfreenet(variant, pretrained=False, **kwargs): | |
model_cfg = model_cfgs[variant] | |
feature_cfg = dict(flatten_sequential=True) | |
return build_model_with_cfg( | |
NormFreeNet, variant, pretrained, | |
model_cfg=model_cfg, | |
feature_cfg=feature_cfg, | |
**kwargs) | |
def dm_nfnet_f0(pretrained=False, **kwargs): | |
""" NFNet-F0 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f0', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f1(pretrained=False, **kwargs): | |
""" NFNet-F1 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f1', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f2(pretrained=False, **kwargs): | |
""" NFNet-F2 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f2', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f3(pretrained=False, **kwargs): | |
""" NFNet-F3 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f3', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f4(pretrained=False, **kwargs): | |
""" NFNet-F4 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f4', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f5(pretrained=False, **kwargs): | |
""" NFNet-F5 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f5', pretrained=pretrained, **kwargs) | |
def dm_nfnet_f6(pretrained=False, **kwargs): | |
""" NFNet-F6 (DeepMind weight compatible) | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('dm_nfnet_f6', pretrained=pretrained, **kwargs) | |
def nfnet_f0(pretrained=False, **kwargs): | |
""" NFNet-F0 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f0', pretrained=pretrained, **kwargs) | |
def nfnet_f1(pretrained=False, **kwargs): | |
""" NFNet-F1 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f1', pretrained=pretrained, **kwargs) | |
def nfnet_f2(pretrained=False, **kwargs): | |
""" NFNet-F2 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f2', pretrained=pretrained, **kwargs) | |
def nfnet_f3(pretrained=False, **kwargs): | |
""" NFNet-F3 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f3', pretrained=pretrained, **kwargs) | |
def nfnet_f4(pretrained=False, **kwargs): | |
""" NFNet-F4 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f4', pretrained=pretrained, **kwargs) | |
def nfnet_f5(pretrained=False, **kwargs): | |
""" NFNet-F5 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f5', pretrained=pretrained, **kwargs) | |
def nfnet_f6(pretrained=False, **kwargs): | |
""" NFNet-F6 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f6', pretrained=pretrained, **kwargs) | |
def nfnet_f7(pretrained=False, **kwargs): | |
""" NFNet-F7 | |
`High-Performance Large-Scale Image Recognition Without Normalization` | |
- https://arxiv.org/abs/2102.06171 | |
""" | |
return _create_normfreenet('nfnet_f7', pretrained=pretrained, **kwargs) | |
def nfnet_l0(pretrained=False, **kwargs): | |
""" NFNet-L0b w/ SiLU | |
My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & SE ratio | |
""" | |
return _create_normfreenet('nfnet_l0', pretrained=pretrained, **kwargs) | |
def eca_nfnet_l0(pretrained=False, **kwargs): | |
""" ECA-NFNet-L0 w/ SiLU | |
My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & ECA attn | |
""" | |
return _create_normfreenet('eca_nfnet_l0', pretrained=pretrained, **kwargs) | |
def eca_nfnet_l1(pretrained=False, **kwargs): | |
""" ECA-NFNet-L1 w/ SiLU | |
My experimental 'light' model w/ F1 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn | |
""" | |
return _create_normfreenet('eca_nfnet_l1', pretrained=pretrained, **kwargs) | |
def eca_nfnet_l2(pretrained=False, **kwargs): | |
""" ECA-NFNet-L2 w/ SiLU | |
My experimental 'light' model w/ F2 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn | |
""" | |
return _create_normfreenet('eca_nfnet_l2', pretrained=pretrained, **kwargs) | |
def eca_nfnet_l3(pretrained=False, **kwargs): | |
""" ECA-NFNet-L3 w/ SiLU | |
My experimental 'light' model w/ F3 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn | |
""" | |
return _create_normfreenet('eca_nfnet_l3', pretrained=pretrained, **kwargs) | |
def nf_regnet_b0(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B0 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b0', pretrained=pretrained, **kwargs) | |
def nf_regnet_b1(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B1 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b1', pretrained=pretrained, **kwargs) | |
def nf_regnet_b2(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B2 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b2', pretrained=pretrained, **kwargs) | |
def nf_regnet_b3(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B3 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b3', pretrained=pretrained, **kwargs) | |
def nf_regnet_b4(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B4 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b4', pretrained=pretrained, **kwargs) | |
def nf_regnet_b5(pretrained=False, **kwargs): | |
""" Normalization-Free RegNet-B5 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_regnet_b5', pretrained=pretrained, **kwargs) | |
def nf_resnet26(pretrained=False, **kwargs): | |
""" Normalization-Free ResNet-26 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_resnet26', pretrained=pretrained, **kwargs) | |
def nf_resnet50(pretrained=False, **kwargs): | |
""" Normalization-Free ResNet-50 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs) | |
def nf_resnet101(pretrained=False, **kwargs): | |
""" Normalization-Free ResNet-101 | |
`Characterizing signal propagation to close the performance gap in unnormalized ResNets` | |
- https://arxiv.org/abs/2101.08692 | |
""" | |
return _create_normfreenet('nf_resnet101', pretrained=pretrained, **kwargs) | |
def nf_seresnet26(pretrained=False, **kwargs): | |
""" Normalization-Free SE-ResNet26 | |
""" | |
return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs) | |
def nf_seresnet50(pretrained=False, **kwargs): | |
""" Normalization-Free SE-ResNet50 | |
""" | |
return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs) | |
def nf_seresnet101(pretrained=False, **kwargs): | |
""" Normalization-Free SE-ResNet101 | |
""" | |
return _create_normfreenet('nf_seresnet101', pretrained=pretrained, **kwargs) | |
def nf_ecaresnet26(pretrained=False, **kwargs): | |
""" Normalization-Free ECA-ResNet26 | |
""" | |
return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs) | |
def nf_ecaresnet50(pretrained=False, **kwargs): | |
""" Normalization-Free ECA-ResNet50 | |
""" | |
return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs) | |
def nf_ecaresnet101(pretrained=False, **kwargs): | |
""" Normalization-Free ECA-ResNet101 | |
""" | |
return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs) | |