gartajackhats1985's picture
Upload 1830 files
07f408f verified
raw
history blame
2.3 kB
"""
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217
Code: https://github.com/clovaai/AdamP
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
import torch.nn.functional as F
from torch.optim.optimizer import Optimizer, required
import math
from .adamp import projection
class SGDP(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, eps=1e-8, delta=0.1, wd_ratio=0.1):
defaults = dict(
lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay,
nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio)
super(SGDP, self).__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
state = self.state[p]
# State initialization
if len(state) == 0:
state['momentum'] = torch.zeros_like(p)
# SGD
buf = state['momentum']
buf.mul_(momentum).add_(grad, alpha=1. - dampening)
if nesterov:
d_p = grad + momentum * buf
else:
d_p = buf
# Projection
wd_ratio = 1.
if len(p.shape) > 1:
d_p, wd_ratio = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps'])
# Weight decay
if weight_decay != 0:
p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum))
# Step
p.add_(d_p, alpha=-group['lr'])
return loss