Spaces:
Running
Running
import folder_paths | |
import os | |
import torch | |
import torch.nn.functional as F | |
from comfy.utils import ProgressBar, load_torch_file | |
import comfy.sample | |
from nodes import CLIPTextEncode | |
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
folder_paths.add_model_folder_path("intrinsic_loras", os.path.join(script_directory, "intrinsic_loras")) | |
class Intrinsic_lora_sampling: | |
def __init__(self): | |
self.loaded_lora = None | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"lora_name": (folder_paths.get_filename_list("intrinsic_loras"), ), | |
"task": ( | |
[ | |
'depth map', | |
'surface normals', | |
'albedo', | |
'shading', | |
], | |
{ | |
"default": 'depth map' | |
}), | |
"text": ("STRING", {"multiline": True, "default": ""}), | |
"clip": ("CLIP", ), | |
"vae": ("VAE", ), | |
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), | |
}, | |
"optional": { | |
"image": ("IMAGE",), | |
"optional_latent": ("LATENT",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "LATENT",) | |
FUNCTION = "onestepsample" | |
CATEGORY = "KJNodes" | |
DESCRIPTION = """ | |
Sampler to use the intrinsic loras: | |
https://github.com/duxiaodan/intrinsic-lora | |
These LoRAs are tiny and thus included | |
with this node pack. | |
""" | |
def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None): | |
pbar = ProgressBar(3) | |
if optional_latent is None: | |
image_list = [] | |
for start_idx in range(0, image.shape[0], per_batch): | |
sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch]) | |
image_list.append(vae.encode(sub_pixels[:,:,:,:3])) | |
sample = torch.cat(image_list, dim=0) | |
else: | |
sample = optional_latent["samples"] | |
noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu") | |
prompt = task + "," + text | |
positive, = CLIPTextEncode.encode(self, clip, prompt) | |
negative = positive #negative shouldn't do anything in this scenario | |
pbar.update(1) | |
#custom model sampling to pass latent through as it is | |
class X0_PassThrough(comfy.model_sampling.EPS): | |
def calculate_denoised(self, sigma, model_output, model_input): | |
return model_output | |
def calculate_input(self, sigma, noise): | |
return noise | |
sampling_base = comfy.model_sampling.ModelSamplingDiscrete | |
sampling_type = X0_PassThrough | |
class ModelSamplingAdvanced(sampling_base, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
#load lora | |
model_clone = model.clone() | |
lora_path = folder_paths.get_full_path("intrinsic_loras", lora_name) | |
lora = load_torch_file(lora_path, safe_load=True) | |
self.loaded_lora = (lora_path, lora) | |
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0] | |
model_clone_with_lora.add_object_patch("model_sampling", model_sampling) | |
samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample, | |
denoise=1.0, disable_noise=True, start_step=0, last_step=1, | |
force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)} | |
pbar.update(1) | |
decoded = [] | |
for start_idx in range(0, samples["samples"].shape[0], per_batch): | |
decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch])) | |
image_out = torch.cat(decoded, dim=0) | |
pbar.update(1) | |
if task == 'depth map': | |
imax = image_out.max() | |
imin = image_out.min() | |
image_out = (image_out-imin)/(imax-imin) | |
image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3) | |
elif task == 'surface normals': | |
image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5 | |
image_out = 1.0 - image_out | |
else: | |
image_out = image_out.clamp(-1.,1.) | |
return (image_out, samples,) |