|
|
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script
|
|
|
import comfy.model_management as model_management
|
|
|
import sys
|
|
|
|
|
|
def install_deps():
|
|
|
try:
|
|
|
import sklearn
|
|
|
except:
|
|
|
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'scikit-learn'])
|
|
|
|
|
|
class DiffusionEdge_Preprocessor:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return define_preprocessor_inputs(
|
|
|
environment=INPUT.COMBO(["indoor", "urban", "natrual"]),
|
|
|
patch_batch_size=INPUT.INT(default=4, min=1, max=16),
|
|
|
resolution=INPUT.RESOLUTION()
|
|
|
)
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "execute"
|
|
|
|
|
|
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
|
|
|
|
|
def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs):
|
|
|
install_deps()
|
|
|
from custom_controlnet_aux.diffusion_edge import DiffusionEdgeDetector
|
|
|
|
|
|
model = DiffusionEdgeDetector \
|
|
|
.from_pretrained(filename = f"diffusion_edge_{environment}.pt") \
|
|
|
.to(model_management.get_torch_device())
|
|
|
out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size)
|
|
|
del model
|
|
|
return (out, )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
"DiffusionEdge_Preprocessor": DiffusionEdge_Preprocessor,
|
|
|
}
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
|
"DiffusionEdge_Preprocessor": "Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)",
|
|
|
} |