gartajackhats1985's picture
Upload 411 files
583c1c7 verified
raw
history blame
16.5 kB
import hashlib
import requests
import json
import re
import os
from datetime import datetime
from server import PromptServer
import folder_paths
from ..utils import get_dict_value, load_json_file, path_exists, save_json_file
from ..utils_userdata import read_userdata_json, save_userdata_json, delete_userdata_file
def _get_info_cache_file(data_type: str, file_hash: str):
return f'info/{file_hash}.{data_type}.json'
async def delete_model_info(file: str,
model_type,
del_info=True,
del_metadata=True,
del_civitai=True):
"""Delete the info json, and the civitai & metadata caches."""
file_path = get_folder_path(file, model_type)
if file_path is None:
return
if del_info:
try_info_path = f'{file_path}.rgthree-info.json'
if os.path.isfile(try_info_path):
os.remove(try_info_path)
if del_civitai or del_metadata:
file_hash = _get_sha256_hash(file_path)
if del_civitai:
json_file_path = _get_info_cache_file(file_hash, 'civitai')
delete_userdata_file(json_file_path)
if del_metadata:
json_file_path = _get_info_cache_file(file_hash, 'metadata')
delete_userdata_file(json_file_path)
async def get_model_info(file: str,
model_type,
default=None,
maybe_fetch_civitai=False,
force_fetch_civitai=False,
maybe_fetch_metadata=False,
force_fetch_metadata=False,
light=False):
"""Compiles a model info given a stored file next to the model, and/or metadata/civitai."""
file_path = get_folder_path(file, model_type)
if file_path is None:
return default
info_data = {}
should_save = False
# Try to load a rgthree-info.json file next to the file.
try_info_path = f'{file_path}.rgthree-info.json'
if path_exists(try_info_path):
info_data = load_json_file(try_info_path)
if 'file' not in info_data:
info_data['file'] = file
should_save = True
if 'path' not in info_data:
info_data['path'] = file_path
should_save = True
# Check if we have an image next to the file and, if so, add it to the front of the images
# (if it isn't already).
img_next_to_file = None
for ext in ['jpg', 'png', 'jpeg']:
try_path = f'{os.path.splitext(file_path)[0]}.{ext}'
if path_exists(try_path):
img_next_to_file = try_path
break
if 'images' not in info_data:
info_data['images'] = []
should_save = True
if img_next_to_file:
img_next_to_file_url = f'/rgthree/api/loras/img?file={file}'
if len(info_data['images']) == 0 or info_data['images'][0]['url'] != img_next_to_file_url:
info_data['images'].insert(0, {'url': img_next_to_file_url})
should_save = True
# If we just want light data then bail now with just existing data, plus file, path and img if
# next to the file.
if light and not maybe_fetch_metadata and not force_fetch_metadata and not maybe_fetch_civitai and not force_fetch_civitai:
return info_data
if 'raw' not in info_data:
info_data['raw'] = {}
should_save = True
should_save = _update_data(info_data) or should_save
should_fetch_civitai = force_fetch_civitai is True or (maybe_fetch_civitai is True and
'civitai' not in info_data['raw'])
should_fetch_metadata = force_fetch_metadata is True or (maybe_fetch_metadata is True and
'metadata' not in info_data['raw'])
if should_fetch_metadata:
data_meta = _get_model_metadata(file, model_type, default={}, refresh=force_fetch_metadata)
should_save = _merge_metadata(info_data, data_meta) or should_save
if should_fetch_civitai:
data_civitai = _get_model_civitai_data(file,
model_type,
default={},
refresh=force_fetch_civitai)
should_save = _merge_civitai_data(info_data, data_civitai) or should_save
if 'sha256' not in info_data:
file_hash = _get_sha256_hash(file_path)
if file_hash is not None:
info_data['sha256'] = file_hash
should_save = True
if should_save:
if 'trainedWords' in info_data:
# Sort by count; if it doesn't exist, then assume it's a top item from civitai or elsewhere.
info_data['trainedWords'] = sorted(info_data['trainedWords'],
key=lambda w: w['count'] if 'count' in w else 99999,
reverse=True)
save_model_info(file, info_data, model_type)
# If we're saving, then the UI is likely waiting to see if the refreshed data is coming in.
await PromptServer.instance.send("rgthree-refreshed-lora-info", {"data": info_data})
return info_data
def _update_data(info_data: dict) -> bool:
"""Ports old data to new data if necessary."""
should_save = False
# If we have "triggerWords" then move them over to "trainedWords"
if 'triggerWords' in info_data and len(info_data['triggerWords']) > 0:
civitai_words = ','.join((get_dict_value(info_data, 'raw.civitai.triggerWords', default=[]) +
get_dict_value(info_data, 'raw.civitai.trainedWords', default=[])))
if 'trainedWords' not in info_data:
info_data['trainedWords'] = []
for trigger_word in info_data['triggerWords']:
word_data = next((data for data in info_data['trainedWords'] if data['word'] == trigger_word),
None)
if word_data is None:
word_data = {'word': trigger_word}
info_data['trainedWords'].append(word_data)
if trigger_word in civitai_words:
word_data['civitai'] = True
else:
word_data['user'] = True
del info_data['triggerWords']
should_save = True
return should_save
def _merge_metadata(info_data: dict, data_meta: dict) -> bool:
"""Returns true if data was saved."""
should_save = False
base_model_file = get_dict_value(data_meta, 'ss_sd_model_name', None)
if base_model_file:
info_data['baseModelFile'] = base_model_file
# Loop over metadata tags
trained_words = {}
if 'ss_tag_frequency' in data_meta and isinstance(data_meta['ss_tag_frequency'], dict):
for bucket_value in data_meta['ss_tag_frequency'].values():
if isinstance(bucket_value, dict):
for tag, count in bucket_value.items():
if tag not in trained_words:
trained_words[tag] = {'word': tag, 'count': 0, 'metadata': True}
trained_words[tag]['count'] = trained_words[tag]['count'] + count
if 'trainedWords' not in info_data:
info_data['trainedWords'] = list(trained_words.values())
should_save = True
else:
# We can't merge, because the list may have other data, like it's part of civitaidata.
merged_dict = {}
for existing_word_data in info_data['trainedWords']:
merged_dict[existing_word_data['word']] = existing_word_data
for new_key, new_word_data in trained_words.items():
if new_key not in merged_dict:
merged_dict[new_key] = {}
merged_dict[new_key] = {**merged_dict[new_key], **new_word_data}
info_data['trainedWords'] = list(merged_dict.values())
should_save = True
# trained_words = list(trained_words.values())
# info_data['meta_trained_words'] = trained_words
info_data['raw']['metadata'] = data_meta
should_save = True
if 'sha256' not in info_data and '_sha256' in data_meta:
info_data['sha256'] = data_meta['_sha256']
should_save = True
return should_save
def _merge_civitai_data(info_data: dict, data_civitai: dict) -> bool:
"""Returns true if data was saved."""
should_save = False
if 'name' not in info_data:
info_data['name'] = get_dict_value(data_civitai, 'model.name', '')
should_save = True
version_name = get_dict_value(data_civitai, 'name')
if version_name is not None:
info_data['name'] += f' - {version_name}'
if 'type' not in info_data:
info_data['type'] = get_dict_value(data_civitai, 'model.type')
should_save = True
if 'baseModel' not in info_data:
info_data['baseModel'] = get_dict_value(data_civitai, 'baseModel')
should_save = True
# We always want to merge triggerword.
civitai_trigger = get_dict_value(data_civitai, 'triggerWords', default=[])
civitai_trained = get_dict_value(data_civitai, 'trainedWords', default=[])
civitai_words = ','.join(civitai_trigger + civitai_trained)
if civitai_words:
civitai_words = re.sub(r"\s*,\s*", ",", civitai_words)
civitai_words = re.sub(r",+", ",", civitai_words)
civitai_words = re.sub(r"^,", "", civitai_words)
civitai_words = re.sub(r",$", "", civitai_words)
if civitai_words:
civitai_words = civitai_words.split(',')
if 'trainedWords' not in info_data:
info_data['trainedWords'] = []
for trigger_word in civitai_words:
word_data = next(
(data for data in info_data['trainedWords'] if data['word'] == trigger_word), None)
if word_data is None:
word_data = {'word': trigger_word}
info_data['trainedWords'].append(word_data)
word_data['civitai'] = True
if 'sha256' not in info_data:
info_data['sha256'] = data_civitai['_sha256']
should_save = True
if 'modelId' in data_civitai:
info_data['links'] = info_data['links'] if 'links' in info_data else []
civitai_link = f'https://civitai.com/models/{get_dict_value(data_civitai, "modelId")}'
if get_dict_value(data_civitai, "id"):
civitai_link += f'?modelVersionId={get_dict_value(data_civitai, "id")}'
info_data['links'].append(civitai_link)
info_data['links'].append(data_civitai['_civitai_api'])
should_save = True
# Take images from civitai
if 'images' in data_civitai:
info_data_image_urls = list(map(lambda i: i['url']
if 'url' in i else None, info_data['images']))
for img in data_civitai['images']:
img_url = get_dict_value(img, 'url')
if img_url is not None and img_url not in info_data_image_urls:
img_id = os.path.splitext(os.path.basename(img_url))[0] if img_url is not None else None
img_data = {
'url': img_url,
'civitaiUrl': f'https://civitai.com/images/{img_id}' if img_id is not None else None,
'width': get_dict_value(img, 'width'),
'height': get_dict_value(img, 'height'),
'type': get_dict_value(img, 'type'),
'nsfwLevel': get_dict_value(img, 'nsfwLevel'),
'seed': get_dict_value(img, 'meta.seed'),
'positive': get_dict_value(img, 'meta.prompt'),
'negative': get_dict_value(img, 'meta.negativePrompt'),
'steps': get_dict_value(img, 'meta.steps'),
'sampler': get_dict_value(img, 'meta.sampler'),
'cfg': get_dict_value(img, 'meta.cfgScale'),
'model': get_dict_value(img, 'meta.Model'),
'resources': get_dict_value(img, 'meta.resources'),
}
info_data['images'].append(img_data)
should_save = True
# The raw data
if 'civitai' not in info_data['raw']:
info_data['raw']['civitai'] = data_civitai
should_save = True
return should_save
def _get_model_civitai_data(file: str, model_type, default=None, refresh=False):
"""Gets the civitai data, either cached from the user directory, or from civitai api."""
file_hash = _get_sha256_hash(get_folder_path(file, model_type))
if file_hash is None:
return None
json_file_path = _get_info_cache_file(file_hash, 'civitai')
api_url = f'https://civitai.com/api/v1/model-versions/by-hash/{file_hash}'
file_data = read_userdata_json(json_file_path)
if file_data is None or refresh is True:
try:
response = requests.get(api_url, timeout=5000)
data = response.json()
save_userdata_json(json_file_path, {
'url': api_url,
'timestamp': datetime.now().timestamp(),
'response': data
})
file_data = read_userdata_json(json_file_path)
except requests.exceptions.RequestException as e: # This is the correct syntax
print(e)
response = file_data['response'] if file_data is not None and 'response' in file_data else None
if response is not None:
response['_sha256'] = file_hash
response['_civitai_api'] = api_url
return response if response is not None else default
def _get_model_metadata(file: str, model_type, default=None, refresh=False):
"""Gets the metadata from the file itself."""
file_path = get_folder_path(file, model_type)
file_hash = _get_sha256_hash(file_path)
if file_hash is None:
return default
json_file_path = _get_info_cache_file(file_hash, 'metadata')
file_data = read_userdata_json(json_file_path)
if file_data is None or refresh is True:
data = _read_file_metadata_from_header(file_path)
if data is not None:
file_data = {'url': file, 'timestamp': datetime.now().timestamp(), 'response': data}
save_userdata_json(json_file_path, file_data)
response = file_data['response'] if file_data is not None and 'response' in file_data else None
if response is not None:
response['_sha256'] = file_hash
return response if response is not None else default
def _read_file_metadata_from_header(file_path: str) -> dict:
"""Reads the file's header and returns a JSON dict metdata if available."""
data = None
try:
if file_path.endswith('.safetensors'):
with open(file_path, "rb") as file:
# https://github.com/huggingface/safetensors#format
# 8 bytes: N, an unsigned little-endian 64-bit integer, containing the size of the header
header_size = int.from_bytes(file.read(8), "little", signed=False)
if header_size <= 0:
raise BufferError("Invalid header size")
header = file.read(header_size)
if header is None:
raise BufferError("Invalid header")
header_json = json.loads(header)
data = header_json["__metadata__"] if "__metadata__" in header_json else None
if data is not None:
for key, value in data.items():
if isinstance(value, str) and value.startswith('{') and value.endswith('}'):
try:
value_as_json = json.loads(value)
data[key] = value_as_json
except Exception:
print(f'metdata for field {key} did not parse as json')
except requests.exceptions.RequestException as e:
print(e)
data = None
return data
def get_folder_path(file: str, model_type):
"""Gets the file path ensuring it exists."""
file_path = folder_paths.get_full_path(model_type, file)
if file_path and not path_exists(file_path):
file_path = os.path.abspath(file_path)
if not path_exists(file_path):
file_path = None
return file_path
def _get_sha256_hash(file_path: str):
"""Returns the hash for the file."""
if not file_path or not path_exists(file_path):
return None
file_hash = None
sha256_hash = hashlib.sha256()
with open(file_path, "rb") as f:
# Read and update hash string value in blocks of 4K
for byte_block in iter(lambda: f.read(4096), b""):
sha256_hash.update(byte_block)
file_hash = sha256_hash.hexdigest()
return file_hash
async def set_model_info_partial(file: str, model_type: str, info_data_partial):
"""Sets partial data into the existing model info data."""
info_data = await get_model_info(file, model_type, default={})
info_data = {**info_data, **info_data_partial}
save_model_info(file, info_data, model_type)
def save_model_info(file: str, info_data, model_type):
"""Saves the model info alongside the model itself."""
file_path = get_folder_path(file, model_type)
if file_path is None:
return
try_info_path = f'{file_path}.rgthree-info.json'
save_json_file(try_info_path, info_data)