Spaces:
Running
Running
""" Class-Attention in Image Transformers (CaiT) | |
Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239 | |
Original code and weights from https://github.com/facebookresearch/deit, copyright below | |
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman | |
""" | |
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
from copy import deepcopy | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_ | |
from .registry import register_model | |
__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, | |
'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = dict( | |
cait_xxs24_224=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', | |
input_size=(3, 224, 224), | |
), | |
cait_xxs24_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth', | |
), | |
cait_xxs36_224=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', | |
input_size=(3, 224, 224), | |
), | |
cait_xxs36_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth', | |
), | |
cait_xs24_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth', | |
), | |
cait_s24_224=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', | |
input_size=(3, 224, 224), | |
), | |
cait_s24_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/S24_384.pth', | |
), | |
cait_s36_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/S36_384.pth', | |
), | |
cait_m36_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/M36_384.pth', | |
), | |
cait_m48_448=_cfg( | |
url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', | |
input_size=(3, 448, 448), | |
), | |
) | |
class ClassAttn(nn.Module): | |
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# with slight modifications to do CA | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.k = nn.Linear(dim, dim, bias=qkv_bias) | |
self.v = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
q = q * self.scale | |
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
attn = (q @ k.transpose(-2, -1)) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) | |
x_cls = self.proj(x_cls) | |
x_cls = self.proj_drop(x_cls) | |
return x_cls | |
class LayerScaleBlockClassAttn(nn.Module): | |
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# with slight modifications to add CA and LayerScale | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=ClassAttn, | |
mlp_block=Mlp, init_values=1e-4): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_block( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x, x_cls): | |
u = torch.cat((x_cls, x), dim=1) | |
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) | |
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) | |
return x_cls | |
class TalkingHeadAttn(nn.Module): | |
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf) | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_l = nn.Linear(num_heads, num_heads) | |
self.proj_w = nn.Linear(num_heads, num_heads) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = (q @ k.transpose(-2, -1)) | |
attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
attn = attn.softmax(dim=-1) | |
attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LayerScaleBlock(nn.Module): | |
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# with slight modifications to add layerScale | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn, | |
mlp_block=Mlp, init_values=1e-4): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_block( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class Cait(nn.Module): | |
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# with slight modifications to adapt to our cait models | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., | |
block_layers=LayerScaleBlock, | |
block_layers_token=LayerScaleBlockClassAttn, | |
patch_layer=PatchEmbed, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU, | |
attn_block=TalkingHeadAttn, | |
mlp_block=Mlp, | |
init_values=1e-4, | |
attn_block_token_only=ClassAttn, | |
mlp_block_token_only=Mlp, | |
depth_token_only=2, | |
mlp_ratio_token_only=4.0 | |
): | |
super().__init__() | |
assert global_pool in ('', 'token', 'avg') | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = embed_dim | |
self.grad_checkpointing = False | |
self.patch_embed = patch_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [drop_path_rate for i in range(depth)] | |
self.blocks = nn.Sequential(*[ | |
block_layers( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_values) | |
for i in range(depth)]) | |
self.blocks_token_only = nn.ModuleList([ | |
block_layers_token( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_token_only, qkv_bias=qkv_bias, | |
drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer, | |
act_layer=act_layer, attn_block=attn_block_token_only, | |
mlp_block=mlp_block_token_only, init_values=init_values) | |
for i in range(depth_token_only)]) | |
self.norm = norm_layer(embed_dim) | |
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def group_matcher(self, coarse=False): | |
def _matcher(name): | |
if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]): | |
return 0 | |
elif name.startswith('blocks.'): | |
return int(name.split('.')[1]) + 1 | |
elif name.startswith('blocks_token_only.'): | |
# overlap token only blocks with last blocks | |
to_offset = len(self.blocks) - len(self.blocks_token_only) + 1 | |
return int(name.split('.')[1]) + to_offset | |
elif name.startswith('norm.'): | |
return len(self.blocks) | |
else: | |
return float('inf') | |
return _matcher | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ('', 'token', 'avg') | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) | |
for i, blk in enumerate(self.blocks_token_only): | |
cls_tokens = blk(x, cls_tokens) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def checkpoint_filter_fn(state_dict, model=None): | |
if 'model' in state_dict: | |
state_dict = state_dict['model'] | |
checkpoint_no_module = {} | |
for k, v in state_dict.items(): | |
checkpoint_no_module[k.replace('module.', '')] = v | |
return checkpoint_no_module | |
def _create_cait(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
Cait, variant, pretrained, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def cait_xxs24_224(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_xxs24_224', pretrained=pretrained, **model_args) | |
return model | |
def cait_xxs24_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_xxs24_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_xxs36_224(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_xxs36_224', pretrained=pretrained, **model_args) | |
return model | |
def cait_xxs36_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_xxs36_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_xs24_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_xs24_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_s24_224(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_s24_224', pretrained=pretrained, **model_args) | |
return model | |
def cait_s24_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs) | |
model = _create_cait('cait_s24_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_s36_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6, **kwargs) | |
model = _create_cait('cait_s36_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_m36_384(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6, **kwargs) | |
model = _create_cait('cait_m36_384', pretrained=pretrained, **model_args) | |
return model | |
def cait_m48_448(pretrained=False, **kwargs): | |
model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6, **kwargs) | |
model = _create_cait('cait_m48_448', pretrained=pretrained, **model_args) | |
return model | |