Spaces:
Running
Running
""" CrossViT Model | |
@inproceedings{ | |
chen2021crossvit, | |
title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}}, | |
author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda}, | |
booktitle={International Conference on Computer Vision (ICCV)}, | |
year={2021} | |
} | |
Paper link: https://arxiv.org/abs/2103.14899 | |
Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py | |
NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408 | |
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman | |
""" | |
# Copyright IBM All Rights Reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
""" | |
Modifed from custom_timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
""" | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.hub | |
from functools import partial | |
from typing import List | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .fx_features import register_notrace_function | |
from .helpers import build_model_with_cfg | |
from .layers import DropPath, to_2tuple, trunc_normal_, _assert | |
from .registry import register_model | |
from .vision_transformer import Mlp, Block | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, | |
'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'), | |
'classifier': ('head.0', 'head.1'), | |
**kwargs | |
} | |
default_cfgs = { | |
'crossvit_15_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_224.pth'), | |
'crossvit_15_dagger_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_dagger_224.pth', | |
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), | |
), | |
'crossvit_15_dagger_408': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_dagger_384.pth', | |
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, | |
), | |
'crossvit_18_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_224.pth'), | |
'crossvit_18_dagger_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_dagger_224.pth', | |
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), | |
), | |
'crossvit_18_dagger_408': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_dagger_384.pth', | |
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, | |
), | |
'crossvit_9_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_9_224.pth'), | |
'crossvit_9_dagger_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_9_dagger_224.pth', | |
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), | |
), | |
'crossvit_base_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_base_224.pth'), | |
'crossvit_small_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_small_224.pth'), | |
'crossvit_tiny_240': _cfg( | |
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_tiny_224.pth'), | |
} | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
if multi_conv: | |
if patch_size[0] == 12: | |
self.proj = nn.Sequential( | |
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1), | |
) | |
elif patch_size[0] == 16: | |
self.proj = nn.Sequential( | |
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1), | |
) | |
else: | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
_assert(H == self.img_size[0], | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") | |
_assert(W == self.img_size[1], | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wk = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wv = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
# B1C -> B1H(C/H) -> BH1(C/H) | |
q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
# BNC -> BNH(C/H) -> BHN(C/H) | |
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
# BNC -> BNH(C/H) -> BHN(C/H) | |
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class CrossAttentionBlock(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = CrossAttention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x))) | |
return x | |
class MultiScaleBlock(nn.Module): | |
def __init__(self, dim, patches, depth, num_heads, mlp_ratio, qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
num_branches = len(dim) | |
self.num_branches = num_branches | |
# different branch could have different embedding size, the first one is the base | |
self.blocks = nn.ModuleList() | |
for d in range(num_branches): | |
tmp = [] | |
for i in range(depth[d]): | |
tmp.append(Block( | |
dim=dim[d], num_heads=num_heads[d], mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, | |
drop=drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer)) | |
if len(tmp) != 0: | |
self.blocks.append(nn.Sequential(*tmp)) | |
if len(self.blocks) == 0: | |
self.blocks = None | |
self.projs = nn.ModuleList() | |
for d in range(num_branches): | |
if dim[d] == dim[(d + 1) % num_branches] and False: | |
tmp = [nn.Identity()] | |
else: | |
tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])] | |
self.projs.append(nn.Sequential(*tmp)) | |
self.fusion = nn.ModuleList() | |
for d in range(num_branches): | |
d_ = (d + 1) % num_branches | |
nh = num_heads[d_] | |
if depth[-1] == 0: # backward capability: | |
self.fusion.append( | |
CrossAttentionBlock( | |
dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, | |
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer)) | |
else: | |
tmp = [] | |
for _ in range(depth[-1]): | |
tmp.append(CrossAttentionBlock( | |
dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, | |
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer)) | |
self.fusion.append(nn.Sequential(*tmp)) | |
self.revert_projs = nn.ModuleList() | |
for d in range(num_branches): | |
if dim[(d + 1) % num_branches] == dim[d] and False: | |
tmp = [nn.Identity()] | |
else: | |
tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(), | |
nn.Linear(dim[(d + 1) % num_branches], dim[d])] | |
self.revert_projs.append(nn.Sequential(*tmp)) | |
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |
outs_b = [] | |
for i, block in enumerate(self.blocks): | |
outs_b.append(block(x[i])) | |
# only take the cls token out | |
proj_cls_token = torch.jit.annotate(List[torch.Tensor], []) | |
for i, proj in enumerate(self.projs): | |
proj_cls_token.append(proj(outs_b[i][:, 0:1, ...])) | |
# cross attention | |
outs = [] | |
for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)): | |
tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1) | |
tmp = fusion(tmp) | |
reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...]) | |
tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1) | |
outs.append(tmp) | |
return outs | |
def _compute_num_patches(img_size, patches): | |
return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)] | |
def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False): # annotations for torchscript | |
""" | |
Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing. | |
Args: | |
x (Tensor): input image | |
ss (tuple[int, int]): height and width to scale to | |
crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False | |
Returns: | |
Tensor: the "scaled" image batch tensor | |
""" | |
H, W = x.shape[-2:] | |
if H != ss[0] or W != ss[1]: | |
if crop_scale and ss[0] <= H and ss[1] <= W: | |
cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.)) | |
x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]] | |
else: | |
x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) | |
return x | |
class CrossViT(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__( | |
self, img_size=224, img_scale=(1.0, 1.0), patch_size=(8, 16), in_chans=3, num_classes=1000, | |
embed_dim=(192, 384), depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), num_heads=(6, 12), mlp_ratio=(2., 2., 4.), | |
multi_conv=False, crop_scale=False, qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), global_pool='token', | |
): | |
super().__init__() | |
assert global_pool in ('token', 'avg') | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.img_size = to_2tuple(img_size) | |
img_scale = to_2tuple(img_scale) | |
self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale] | |
self.crop_scale = crop_scale # crop instead of interpolate for scale | |
num_patches = _compute_num_patches(self.img_size_scaled, patch_size) | |
self.num_branches = len(patch_size) | |
self.embed_dim = embed_dim | |
self.num_features = sum(embed_dim) | |
self.patch_embed = nn.ModuleList() | |
# hard-coded for torch jit script | |
for i in range(self.num_branches): | |
setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i]))) | |
setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i]))) | |
for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim): | |
self.patch_embed.append( | |
PatchEmbed(img_size=im_s, patch_size=p, in_chans=in_chans, embed_dim=d, multi_conv=multi_conv)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
total_depth = sum([sum(x[-2:]) for x in depth]) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] # stochastic depth decay rule | |
dpr_ptr = 0 | |
self.blocks = nn.ModuleList() | |
for idx, block_cfg in enumerate(depth): | |
curr_depth = max(block_cfg[:-1]) + block_cfg[-1] | |
dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth] | |
blk = MultiScaleBlock( | |
embed_dim, num_patches, block_cfg, num_heads=num_heads, mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr_, norm_layer=norm_layer) | |
dpr_ptr += curr_depth | |
self.blocks.append(blk) | |
self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)]) | |
self.head = nn.ModuleList([ | |
nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() | |
for i in range(self.num_branches)]) | |
for i in range(self.num_branches): | |
trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02) | |
trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
out = set() | |
for i in range(self.num_branches): | |
out.add(f'cls_token_{i}') | |
pe = getattr(self, f'pos_embed_{i}', None) | |
if pe is not None and pe.requires_grad: | |
out.add(f'pos_embed_{i}') | |
return out | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ('token', 'avg') | |
self.global_pool = global_pool | |
self.head = nn.ModuleList( | |
[nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in | |
range(self.num_branches)]) | |
def forward_features(self, x) -> List[torch.Tensor]: | |
B = x.shape[0] | |
xs = [] | |
for i, patch_embed in enumerate(self.patch_embed): | |
x_ = x | |
ss = self.img_size_scaled[i] | |
x_ = scale_image(x_, ss, self.crop_scale) | |
x_ = patch_embed(x_) | |
cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script | |
cls_tokens = cls_tokens.expand(B, -1, -1) | |
x_ = torch.cat((cls_tokens, x_), dim=1) | |
pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 # hard-coded for torch jit script | |
x_ = x_ + pos_embed | |
x_ = self.pos_drop(x_) | |
xs.append(x_) | |
for i, blk in enumerate(self.blocks): | |
xs = blk(xs) | |
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm | |
xs = [norm(xs[i]) for i, norm in enumerate(self.norm)] | |
return xs | |
def forward_head(self, xs: List[torch.Tensor], pre_logits: bool = False) -> torch.Tensor: | |
xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs] | |
if pre_logits or isinstance(self.head[0], nn.Identity): | |
return torch.cat([x for x in xs], dim=1) | |
return torch.mean(torch.stack([head(xs[i]) for i, head in enumerate(self.head)], dim=0), dim=0) | |
def forward(self, x): | |
xs = self.forward_features(x) | |
x = self.forward_head(xs) | |
return x | |
def _create_crossvit(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
def pretrained_filter_fn(state_dict): | |
new_state_dict = {} | |
for key in state_dict.keys(): | |
if 'pos_embed' in key or 'cls_token' in key: | |
new_key = key.replace(".", "_") | |
else: | |
new_key = key | |
new_state_dict[new_key] = state_dict[key] | |
return new_state_dict | |
return build_model_with_cfg( | |
CrossViT, variant, pretrained, | |
pretrained_filter_fn=pretrained_filter_fn, | |
**kwargs) | |
def crossvit_tiny_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], | |
num_heads=[3, 3], mlp_ratio=[4, 4, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_small_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], | |
num_heads=[6, 6], mlp_ratio=[4, 4, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_base_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], | |
num_heads=[12, 12], mlp_ratio=[4, 4, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_9_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], | |
num_heads=[4, 4], mlp_ratio=[3, 3, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_15_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], | |
num_heads=[6, 6], mlp_ratio=[3, 3, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_18_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], | |
num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs) | |
model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_9_dagger_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], | |
num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs) | |
model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_15_dagger_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], | |
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs) | |
model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_15_dagger_408(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], | |
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs) | |
model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_18_dagger_240(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], | |
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs) | |
model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **model_args) | |
return model | |
def crossvit_18_dagger_408(pretrained=False, **kwargs): | |
model_args = dict( | |
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], | |
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs) | |
model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **model_args) | |
return model | |