Spaces:
Running
Running
""" Global Context ViT | |
From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py | |
Global Context Vision Transformers -https://arxiv.org/abs/2206.09959 | |
@article{hatamizadeh2022global, | |
title={Global Context Vision Transformers}, | |
author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo}, | |
journal={arXiv preprint arXiv:2206.09959}, | |
year={2022} | |
} | |
Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit. | |
The license for this code release is Apache 2.0 with no commercial restrictions. | |
However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license | |
(https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones... | |
Hacked together by / Copyright 2022, Ross Wightman | |
""" | |
import math | |
from functools import partial | |
from typing import Callable, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .fx_features import register_notrace_function | |
from .helpers import build_model_with_cfg, named_apply | |
from .layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d,\ | |
get_attn, get_act_layer, get_norm_layer, _assert | |
from .registry import register_model | |
from .vision_transformer_relpos import RelPosMlp, RelPosBias # FIXME move to common location | |
__all__ = ['GlobalContextVit'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.conv1', 'classifier': 'head.fc', | |
'fixed_input_size': True, | |
**kwargs | |
} | |
default_cfgs = { | |
'gcvit_xxtiny': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), | |
'gcvit_xtiny': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), | |
'gcvit_tiny': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), | |
'gcvit_small': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), | |
'gcvit_base': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'), | |
} | |
class MbConvBlock(nn.Module): | |
""" A depthwise separable / fused mbconv style residual block with SE, `no norm. | |
""" | |
def __init__( | |
self, | |
in_chs, | |
out_chs=None, | |
expand_ratio=1.0, | |
attn_layer='se', | |
bias=False, | |
act_layer=nn.GELU, | |
): | |
super().__init__() | |
attn_kwargs = dict(act_layer=act_layer) | |
if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': | |
attn_kwargs['rd_ratio'] = 0.25 | |
attn_kwargs['bias'] = False | |
attn_layer = get_attn(attn_layer) | |
out_chs = out_chs or in_chs | |
mid_chs = int(expand_ratio * in_chs) | |
self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) | |
self.act = act_layer() | |
self.se = attn_layer(mid_chs, **attn_kwargs) | |
self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) | |
def forward(self, x): | |
shortcut = x | |
x = self.conv_dw(x) | |
x = self.act(x) | |
x = self.se(x) | |
x = self.conv_pw(x) | |
x = x + shortcut | |
return x | |
class Downsample2d(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out=None, | |
reduction='conv', | |
act_layer=nn.GELU, | |
norm_layer=LayerNorm2d, # NOTE in NCHW | |
): | |
super().__init__() | |
dim_out = dim_out or dim | |
self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() | |
self.conv_block = MbConvBlock(dim, act_layer=act_layer) | |
assert reduction in ('conv', 'max', 'avg') | |
if reduction == 'conv': | |
self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) | |
elif reduction == 'max': | |
assert dim == dim_out | |
self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
else: | |
assert dim == dim_out | |
self.reduction = nn.AvgPool2d(kernel_size=2) | |
self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() | |
def forward(self, x): | |
x = self.norm1(x) | |
x = self.conv_block(x) | |
x = self.reduction(x) | |
x = self.norm2(x) | |
return x | |
class FeatureBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
levels=0, | |
reduction='max', | |
act_layer=nn.GELU, | |
): | |
super().__init__() | |
reductions = levels | |
levels = max(1, levels) | |
if reduction == 'avg': | |
pool_fn = partial(nn.AvgPool2d, kernel_size=2) | |
else: | |
pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) | |
self.blocks = nn.Sequential() | |
for i in range(levels): | |
self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer)) | |
if reductions: | |
self.blocks.add_module(f'pool{i+1}', pool_fn()) | |
reductions -= 1 | |
def forward(self, x): | |
return self.blocks(x) | |
class Stem(nn.Module): | |
def __init__( | |
self, | |
in_chs: int = 3, | |
out_chs: int = 96, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW | |
): | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) | |
self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.down(x) | |
return x | |
class WindowAttentionGlobal(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
window_size: Tuple[int, int], | |
use_global: bool = True, | |
qkv_bias: bool = True, | |
attn_drop: float = 0., | |
proj_drop: float = 0., | |
): | |
super().__init__() | |
window_size = to_2tuple(window_size) | |
self.window_size = window_size | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.use_global = use_global | |
self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) | |
if self.use_global: | |
self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
else: | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, q_global: Optional[torch.Tensor] = None): | |
B, N, C = x.shape | |
if self.use_global and q_global is not None: | |
_assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') | |
kv = self.qkv(x) | |
kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
k, v = kv.unbind(0) | |
q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) | |
q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) | |
else: | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
attn = self.rel_pos(attn) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def window_partition(x, window_size: Tuple[int, int]): | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) | |
return windows | |
# reason: int argument is a Proxy | |
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): | |
H, W = img_size | |
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) | |
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class GlobalContextVitBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
feat_size: Tuple[int, int], | |
num_heads: int, | |
window_size: int = 7, | |
mlp_ratio: float = 4., | |
use_global: bool = True, | |
qkv_bias: bool = True, | |
layer_scale: Optional[float] = None, | |
proj_drop: float = 0., | |
attn_drop: float = 0., | |
drop_path: float = 0., | |
attn_layer: Callable = WindowAttentionGlobal, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = nn.LayerNorm, | |
): | |
super().__init__() | |
feat_size = to_2tuple(feat_size) | |
window_size = to_2tuple(window_size) | |
self.window_size = window_size | |
self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1])) | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_layer( | |
dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
use_global=use_global, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
) | |
self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) | |
self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def _window_attn(self, x, q_global: Optional[torch.Tensor] = None): | |
B, H, W, C = x.shape | |
x_win = window_partition(x, self.window_size) | |
x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) | |
attn_win = self.attn(x_win, q_global) | |
x = window_reverse(attn_win, self.window_size, (H, W)) | |
return x | |
def forward(self, x, q_global: Optional[torch.Tensor] = None): | |
x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class GlobalContextVitStage(nn.Module): | |
def __init__( | |
self, | |
dim, | |
depth: int, | |
num_heads: int, | |
feat_size: Tuple[int, int], | |
window_size: Tuple[int, int], | |
downsample: bool = True, | |
global_norm: bool = False, | |
stage_norm: bool = False, | |
mlp_ratio: float = 4., | |
qkv_bias: bool = True, | |
layer_scale: Optional[float] = None, | |
proj_drop: float = 0., | |
attn_drop: float = 0., | |
drop_path: Union[List[float], float] = 0.0, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = nn.LayerNorm, | |
norm_layer_cl: Callable = LayerNorm2d, | |
): | |
super().__init__() | |
if downsample: | |
self.downsample = Downsample2d( | |
dim=dim, | |
dim_out=dim * 2, | |
norm_layer=norm_layer, | |
) | |
dim = dim * 2 | |
feat_size = (feat_size[0] // 2, feat_size[1] // 2) | |
else: | |
self.downsample = nn.Identity() | |
self.feat_size = feat_size | |
window_size = to_2tuple(window_size) | |
feat_levels = int(math.log2(min(feat_size) / min(window_size))) | |
self.global_block = FeatureBlock(dim, feat_levels) | |
self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() | |
self.blocks = nn.ModuleList([ | |
GlobalContextVitBlock( | |
dim=dim, | |
num_heads=num_heads, | |
feat_size=feat_size, | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
use_global=(i % 2 != 0), | |
layer_scale=layer_scale, | |
proj_drop=proj_drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
act_layer=act_layer, | |
norm_layer=norm_layer_cl, | |
) | |
for i in range(depth) | |
]) | |
self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() | |
self.dim = dim | |
self.feat_size = feat_size | |
self.grad_checkpointing = False | |
def forward(self, x): | |
# input NCHW, downsample & global block are 2d conv + pooling | |
x = self.downsample(x) | |
global_query = self.global_block(x) | |
# reshape NCHW --> NHWC for transformer blocks | |
x = x.permute(0, 2, 3, 1) | |
global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) | |
for blk in self.blocks: | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x, global_query) | |
x = self.norm(x) | |
x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW | |
return x | |
class GlobalContextVit(nn.Module): | |
def __init__( | |
self, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: str = 'avg', | |
img_size: Tuple[int, int] = 224, | |
window_ratio: Tuple[int, ...] = (32, 32, 16, 32), | |
window_size: Tuple[int, ...] = None, | |
embed_dim: int = 64, | |
depths: Tuple[int, ...] = (3, 4, 19, 5), | |
num_heads: Tuple[int, ...] = (2, 4, 8, 16), | |
mlp_ratio: float = 3.0, | |
qkv_bias: bool = True, | |
layer_scale: Optional[float] = None, | |
drop_rate: float = 0., | |
proj_drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
weight_init='', | |
act_layer: str = 'gelu', | |
norm_layer: str = 'layernorm2d', | |
norm_layer_cl: str = 'layernorm', | |
norm_eps: float = 1e-5, | |
): | |
super().__init__() | |
act_layer = get_act_layer(act_layer) | |
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) | |
norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) | |
img_size = to_2tuple(img_size) | |
feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4 | |
self.global_pool = global_pool | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
num_stages = len(depths) | |
self.num_features = int(embed_dim * 2 ** (num_stages - 1)) | |
if window_size is not None: | |
window_size = to_ntuple(num_stages)(window_size) | |
else: | |
assert window_ratio is not None | |
window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) | |
self.stem = Stem( | |
in_chs=in_chans, | |
out_chs=embed_dim, | |
act_layer=act_layer, | |
norm_layer=norm_layer | |
) | |
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] | |
stages = [] | |
for i in range(num_stages): | |
last_stage = i == num_stages - 1 | |
stage_scale = 2 ** max(i - 1, 0) | |
stages.append(GlobalContextVitStage( | |
dim=embed_dim * stage_scale, | |
depth=depths[i], | |
num_heads=num_heads[i], | |
feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), | |
window_size=window_size[i], | |
downsample=i != 0, | |
stage_norm=last_stage, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
layer_scale=layer_scale, | |
proj_drop=proj_drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
norm_layer_cl=norm_layer_cl, | |
)) | |
self.stages = nn.Sequential(*stages) | |
# Classifier head | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) | |
if weight_init: | |
named_apply(partial(self._init_weights, scheme=weight_init), self) | |
def _init_weights(self, module, name, scheme='vit'): | |
# note Conv2d left as default init | |
if scheme == 'vit': | |
if isinstance(module, nn.Linear): | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
if 'mlp' in name: | |
nn.init.normal_(module.bias, std=1e-6) | |
else: | |
nn.init.zeros_(module.bias) | |
else: | |
if isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
def no_weight_decay(self): | |
return { | |
k for k, _ in self.named_parameters() | |
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', # stem and embed | |
blocks=r'^stages\.(\d+)' | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
for s in self.stages: | |
s.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is None: | |
global_pool = self.head.global_pool.pool_type | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
def forward_features(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.stem(x) | |
x = self.stages(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=pre_logits) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_gcvit(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) | |
return model | |
def gcvit_xxtiny(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(2, 2, 6, 2), | |
num_heads=(2, 4, 8, 16), | |
**kwargs) | |
return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) | |
def gcvit_xtiny(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(3, 4, 6, 5), | |
num_heads=(2, 4, 8, 16), | |
**kwargs) | |
return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) | |
def gcvit_tiny(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(3, 4, 19, 5), | |
num_heads=(2, 4, 8, 16), | |
**kwargs) | |
return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) | |
def gcvit_small(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(3, 4, 19, 5), | |
num_heads=(3, 6, 12, 24), | |
embed_dim=96, | |
mlp_ratio=2, | |
layer_scale=1e-5, | |
**kwargs) | |
return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) | |
def gcvit_base(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
depths=(3, 4, 19, 5), | |
num_heads=(4, 8, 16, 32), | |
embed_dim=128, | |
mlp_ratio=2, | |
layer_scale=1e-5, | |
**kwargs) | |
return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs) | |