Spaces:
Running
Running
""" LeViT | |
Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` | |
- https://arxiv.org/abs/2104.01136 | |
@article{graham2021levit, | |
title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, | |
author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, | |
journal={arXiv preprint arXiv:22104.01136}, | |
year={2021} | |
} | |
Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. | |
This version combines both conv/linear models and fixes torchscript compatibility. | |
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman | |
""" | |
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
# Modified from | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# Copyright 2020 Ross Wightman, Apache-2.0 License | |
import itertools | |
from copy import deepcopy | |
from functools import partial | |
from typing import Dict | |
import torch | |
import torch.nn as nn | |
from custom_timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN | |
from .helpers import build_model_with_cfg, checkpoint_seq | |
from .layers import to_ntuple, get_act_layer | |
from .vision_transformer import trunc_normal_ | |
from .registry import register_model | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.0.c', 'classifier': ('head.l', 'head_dist.l'), | |
**kwargs | |
} | |
default_cfgs = dict( | |
levit_128s=_cfg( | |
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth' | |
), | |
levit_128=_cfg( | |
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth' | |
), | |
levit_192=_cfg( | |
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth' | |
), | |
levit_256=_cfg( | |
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth' | |
), | |
levit_384=_cfg( | |
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth' | |
), | |
levit_256d=_cfg(url='', classifier='head.l'), | |
) | |
model_cfgs = dict( | |
levit_128s=dict( | |
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), | |
levit_128=dict( | |
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), | |
levit_192=dict( | |
embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), | |
levit_256=dict( | |
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), | |
levit_384=dict( | |
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), | |
levit_256d=dict( | |
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6)), | |
) | |
__all__ = ['Levit'] | |
def levit_128s(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_128s', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
def levit_128(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_128', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
def levit_192(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_192', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
def levit_256(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_256', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
def levit_384(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_384', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
def levit_256d(pretrained=False, use_conv=False, **kwargs): | |
return create_levit( | |
'levit_256d', pretrained=pretrained, use_conv=use_conv, distilled=False, **kwargs) | |
class ConvNorm(nn.Sequential): | |
def __init__( | |
self, in_chs, out_chs, kernel_size=1, stride=1, pad=0, dilation=1, | |
groups=1, bn_weight_init=1, resolution=-10000): | |
super().__init__() | |
self.add_module('c', nn.Conv2d(in_chs, out_chs, kernel_size, stride, pad, dilation, groups, bias=False)) | |
self.add_module('bn', nn.BatchNorm2d(out_chs)) | |
nn.init.constant_(self.bn.weight, bn_weight_init) | |
def fuse(self): | |
c, bn = self._modules.values() | |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
w = c.weight * w[:, None, None, None] | |
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
m = nn.Conv2d( | |
w.size(1), w.size(0), w.shape[2:], stride=self.c.stride, | |
padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) | |
m.weight.data.copy_(w) | |
m.bias.data.copy_(b) | |
return m | |
class LinearNorm(nn.Sequential): | |
def __init__(self, in_features, out_features, bn_weight_init=1, resolution=-100000): | |
super().__init__() | |
self.add_module('c', nn.Linear(in_features, out_features, bias=False)) | |
self.add_module('bn', nn.BatchNorm1d(out_features)) | |
nn.init.constant_(self.bn.weight, bn_weight_init) | |
def fuse(self): | |
l, bn = self._modules.values() | |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
w = l.weight * w[:, None] | |
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
m = nn.Linear(w.size(1), w.size(0)) | |
m.weight.data.copy_(w) | |
m.bias.data.copy_(b) | |
return m | |
def forward(self, x): | |
x = self.c(x) | |
return self.bn(x.flatten(0, 1)).reshape_as(x) | |
class NormLinear(nn.Sequential): | |
def __init__(self, in_features, out_features, bias=True, std=0.02): | |
super().__init__() | |
self.add_module('bn', nn.BatchNorm1d(in_features)) | |
self.add_module('l', nn.Linear(in_features, out_features, bias=bias)) | |
trunc_normal_(self.l.weight, std=std) | |
if self.l.bias is not None: | |
nn.init.constant_(self.l.bias, 0) | |
def fuse(self): | |
bn, l = self._modules.values() | |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
w = l.weight * w[None, :] | |
if l.bias is None: | |
b = b @ self.l.weight.T | |
else: | |
b = (l.weight @ b[:, None]).view(-1) + self.l.bias | |
m = nn.Linear(w.size(1), w.size(0)) | |
m.weight.data.copy_(w) | |
m.bias.data.copy_(b) | |
return m | |
def stem_b16(in_chs, out_chs, activation, resolution=224): | |
return nn.Sequential( | |
ConvNorm(in_chs, out_chs // 8, 3, 2, 1, resolution=resolution), | |
activation(), | |
ConvNorm(out_chs // 8, out_chs // 4, 3, 2, 1, resolution=resolution // 2), | |
activation(), | |
ConvNorm(out_chs // 4, out_chs // 2, 3, 2, 1, resolution=resolution // 4), | |
activation(), | |
ConvNorm(out_chs // 2, out_chs, 3, 2, 1, resolution=resolution // 8)) | |
class Residual(nn.Module): | |
def __init__(self, m, drop): | |
super().__init__() | |
self.m = m | |
self.drop = drop | |
def forward(self, x): | |
if self.training and self.drop > 0: | |
return x + self.m(x) * torch.rand( | |
x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() | |
else: | |
return x + self.m(x) | |
class Subsample(nn.Module): | |
def __init__(self, stride, resolution): | |
super().__init__() | |
self.stride = stride | |
self.resolution = resolution | |
def forward(self, x): | |
B, N, C = x.shape | |
x = x.view(B, self.resolution, self.resolution, C)[:, ::self.stride, ::self.stride] | |
return x.reshape(B, -1, C) | |
class Attention(nn.Module): | |
ab: Dict[str, torch.Tensor] | |
def __init__( | |
self, dim, key_dim, num_heads=8, attn_ratio=4, act_layer=None, resolution=14, use_conv=False): | |
super().__init__() | |
ln_layer = ConvNorm if use_conv else LinearNorm | |
self.use_conv = use_conv | |
self.num_heads = num_heads | |
self.scale = key_dim ** -0.5 | |
self.key_dim = key_dim | |
self.key_attn_dim = key_dim * num_heads | |
self.val_dim = int(attn_ratio * key_dim) | |
self.val_attn_dim = int(attn_ratio * key_dim) * num_heads | |
self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2, resolution=resolution) | |
self.proj = nn.Sequential( | |
act_layer(), | |
ln_layer(self.val_attn_dim, dim, bn_weight_init=0, resolution=resolution) | |
) | |
self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution ** 2)) | |
pos = torch.stack(torch.meshgrid(torch.arange(resolution), torch.arange(resolution))).flatten(1) | |
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() | |
rel_pos = (rel_pos[0] * resolution) + rel_pos[1] | |
self.register_buffer('attention_bias_idxs', rel_pos) | |
self.ab = {} | |
def train(self, mode=True): | |
super().train(mode) | |
if mode and self.ab: | |
self.ab = {} # clear ab cache | |
def get_attention_biases(self, device: torch.device) -> torch.Tensor: | |
if self.training: | |
return self.attention_biases[:, self.attention_bias_idxs] | |
else: | |
device_key = str(device) | |
if device_key not in self.ab: | |
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] | |
return self.ab[device_key] | |
def forward(self, x): # x (B,C,H,W) | |
if self.use_conv: | |
B, C, H, W = x.shape | |
q, k, v = self.qkv(x).view( | |
B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) | |
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) | |
attn = attn.softmax(dim=-1) | |
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) | |
else: | |
B, N, C = x.shape | |
q, k, v = self.qkv(x).view( | |
B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) | |
q = q.permute(0, 2, 1, 3) | |
k = k.permute(0, 2, 3, 1) | |
v = v.permute(0, 2, 1, 3) | |
attn = q @ k * self.scale + self.get_attention_biases(x.device) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) | |
x = self.proj(x) | |
return x | |
class AttentionSubsample(nn.Module): | |
ab: Dict[str, torch.Tensor] | |
def __init__( | |
self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2, | |
act_layer=None, stride=2, resolution=14, resolution_out=7, use_conv=False): | |
super().__init__() | |
self.stride = stride | |
self.num_heads = num_heads | |
self.scale = key_dim ** -0.5 | |
self.key_dim = key_dim | |
self.key_attn_dim = key_dim * num_heads | |
self.val_dim = int(attn_ratio * key_dim) | |
self.val_attn_dim = self.val_dim * self.num_heads | |
self.resolution = resolution | |
self.resolution_out_area = resolution_out ** 2 | |
self.use_conv = use_conv | |
if self.use_conv: | |
ln_layer = ConvNorm | |
sub_layer = partial(nn.AvgPool2d, kernel_size=1, padding=0) | |
else: | |
ln_layer = LinearNorm | |
sub_layer = partial(Subsample, resolution=resolution) | |
self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim, resolution=resolution) | |
self.q = nn.Sequential( | |
sub_layer(stride=stride), | |
ln_layer(in_dim, self.key_attn_dim, resolution=resolution_out) | |
) | |
self.proj = nn.Sequential( | |
act_layer(), | |
ln_layer(self.val_attn_dim, out_dim, resolution=resolution_out) | |
) | |
self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.resolution ** 2)) | |
k_pos = torch.stack(torch.meshgrid(torch.arange(resolution), torch.arange(resolution))).flatten(1) | |
q_pos = torch.stack(torch.meshgrid( | |
torch.arange(0, resolution, step=stride), | |
torch.arange(0, resolution, step=stride))).flatten(1) | |
rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() | |
rel_pos = (rel_pos[0] * resolution) + rel_pos[1] | |
self.register_buffer('attention_bias_idxs', rel_pos) | |
self.ab = {} # per-device attention_biases cache | |
def train(self, mode=True): | |
super().train(mode) | |
if mode and self.ab: | |
self.ab = {} # clear ab cache | |
def get_attention_biases(self, device: torch.device) -> torch.Tensor: | |
if self.training: | |
return self.attention_biases[:, self.attention_bias_idxs] | |
else: | |
device_key = str(device) | |
if device_key not in self.ab: | |
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] | |
return self.ab[device_key] | |
def forward(self, x): | |
if self.use_conv: | |
B, C, H, W = x.shape | |
k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) | |
q = self.q(x).view(B, self.num_heads, self.key_dim, self.resolution_out_area) | |
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) | |
attn = attn.softmax(dim=-1) | |
x = (v @ attn.transpose(-2, -1)).reshape(B, -1, self.resolution, self.resolution) | |
else: | |
B, N, C = x.shape | |
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) | |
k = k.permute(0, 2, 3, 1) # BHCN | |
v = v.permute(0, 2, 1, 3) # BHNC | |
q = self.q(x).view(B, self.resolution_out_area, self.num_heads, self.key_dim).permute(0, 2, 1, 3) | |
attn = q @ k * self.scale + self.get_attention_biases(x.device) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) | |
x = self.proj(x) | |
return x | |
class Levit(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems | |
w/ train scripts that don't take tuple outputs, | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dim=(192,), | |
key_dim=64, | |
depth=(12,), | |
num_heads=(3,), | |
attn_ratio=2, | |
mlp_ratio=2, | |
hybrid_backbone=None, | |
down_ops=None, | |
act_layer='hard_swish', | |
attn_act_layer='hard_swish', | |
use_conv=False, | |
global_pool='avg', | |
drop_rate=0., | |
drop_path_rate=0.): | |
super().__init__() | |
act_layer = get_act_layer(act_layer) | |
attn_act_layer = get_act_layer(attn_act_layer) | |
ln_layer = ConvNorm if use_conv else LinearNorm | |
self.use_conv = use_conv | |
if isinstance(img_size, tuple): | |
# FIXME origin impl passes single img/res dim through whole hierarchy, | |
# not sure this model will be used enough to spend time fixing it. | |
assert img_size[0] == img_size[1] | |
img_size = img_size[0] | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = embed_dim[-1] | |
self.embed_dim = embed_dim | |
self.grad_checkpointing = False | |
num_stages = len(embed_dim) | |
assert len(depth) == len(num_heads) == num_stages | |
key_dim = to_ntuple(num_stages)(key_dim) | |
attn_ratio = to_ntuple(num_stages)(attn_ratio) | |
mlp_ratio = to_ntuple(num_stages)(mlp_ratio) | |
down_ops = down_ops or ( | |
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) | |
('Subsample', key_dim[0], embed_dim[0] // key_dim[0], 4, 2, 2), | |
('Subsample', key_dim[0], embed_dim[1] // key_dim[1], 4, 2, 2), | |
('',) | |
) | |
self.patch_embed = hybrid_backbone or stem_b16(in_chans, embed_dim[0], activation=act_layer) | |
self.blocks = [] | |
resolution = img_size // patch_size | |
for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate( | |
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)): | |
for _ in range(dpth): | |
self.blocks.append( | |
Residual( | |
Attention( | |
ed, kd, nh, attn_ratio=ar, act_layer=attn_act_layer, | |
resolution=resolution, use_conv=use_conv), | |
drop_path_rate)) | |
if mr > 0: | |
h = int(ed * mr) | |
self.blocks.append( | |
Residual(nn.Sequential( | |
ln_layer(ed, h, resolution=resolution), | |
act_layer(), | |
ln_layer(h, ed, bn_weight_init=0, resolution=resolution), | |
), drop_path_rate)) | |
if do[0] == 'Subsample': | |
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) | |
resolution_out = (resolution - 1) // do[5] + 1 | |
self.blocks.append( | |
AttentionSubsample( | |
*embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2], | |
attn_ratio=do[3], act_layer=attn_act_layer, stride=do[5], | |
resolution=resolution, resolution_out=resolution_out, use_conv=use_conv)) | |
resolution = resolution_out | |
if do[4] > 0: # mlp_ratio | |
h = int(embed_dim[i + 1] * do[4]) | |
self.blocks.append( | |
Residual(nn.Sequential( | |
ln_layer(embed_dim[i + 1], h, resolution=resolution), | |
act_layer(), | |
ln_layer(h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution), | |
), drop_path_rate)) | |
self.blocks = nn.Sequential(*self.blocks) | |
# Classifier head | |
self.head = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
def no_weight_decay(self): | |
return {x for x in self.state_dict().keys() if 'attention_biases' in x} | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None, distillation=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
self.global_pool = global_pool | |
self.head = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
if not self.use_conv: | |
x = x.flatten(2).transpose(1, 2) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool == 'avg': | |
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
class LevitDistilled(Levit): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() | |
self.distilled_training = False # must set this True to train w/ distillation token | |
def get_classifier(self): | |
return self.head, self.head_dist | |
def reset_classifier(self, num_classes, global_pool=None, distillation=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
self.global_pool = global_pool | |
self.head = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def set_distilled_training(self, enable=True): | |
self.distilled_training = enable | |
def forward_head(self, x): | |
if self.global_pool == 'avg': | |
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) | |
x, x_dist = self.head(x), self.head_dist(x) | |
if self.distilled_training and self.training and not torch.jit.is_scripting(): | |
# only return separate classification predictions when training in distilled mode | |
return x, x_dist | |
else: | |
# during standard train/finetune, inference average the classifier predictions | |
return (x + x_dist) / 2 | |
def checkpoint_filter_fn(state_dict, model): | |
if 'model' in state_dict: | |
# For deit models | |
state_dict = state_dict['model'] | |
D = model.state_dict() | |
for k in state_dict.keys(): | |
if k in D and D[k].ndim == 4 and state_dict[k].ndim == 2: | |
state_dict[k] = state_dict[k][:, :, None, None] | |
return state_dict | |
def create_levit(variant, pretrained=False, distilled=True, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model_cfg = dict(**model_cfgs[variant], **kwargs) | |
model = build_model_with_cfg( | |
LevitDistilled if distilled else Levit, variant, pretrained, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**model_cfg) | |
return model | |