Spaces:
Running
Running
""" MaxVit and CoAtNet Vision Transformer - CNN Hybrids in PyTorch | |
This is a from-scratch implementation of both CoAtNet and MaxVit in PyTorch. | |
99% of the implementation was done from papers, however last minute some adjustments were made | |
based on the (as yet unfinished?) public code release https://github.com/google-research/maxvit | |
There are multiple sets of models defined for both architectures. Typically, names with a | |
`_rw` suffix are my own original configs prior to referencing https://github.com/google-research/maxvit. | |
These configs work well and appear to be a bit faster / lower resource than the paper. | |
The models without extra prefix / suffix' (coatnet_0_224, maxvit_tiny_224, etc), are intended to | |
match paper, BUT, without any official pretrained weights it's difficult to confirm a 100% match. | |
# FIXME / WARNING | |
This impl remains a WIP, some configs and models may vanish or change... | |
Papers: | |
MaxViT: Multi-Axis Vision Transformer - https://arxiv.org/abs/2204.01697 | |
@article{tu2022maxvit, | |
title={MaxViT: Multi-Axis Vision Transformer}, | |
author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, | |
journal={ECCV}, | |
year={2022}, | |
} | |
CoAtNet: Marrying Convolution and Attention for All Data Sizes - https://arxiv.org/abs/2106.04803 | |
@article{DBLP:journals/corr/abs-2106-04803, | |
author = {Zihang Dai and Hanxiao Liu and Quoc V. Le and Mingxing Tan}, | |
title = {CoAtNet: Marrying Convolution and Attention for All Data Sizes}, | |
journal = {CoRR}, | |
volume = {abs/2106.04803}, | |
year = {2021} | |
} | |
Hacked together by / Copyright 2022, Ross Wightman | |
""" | |
import math | |
from collections import OrderedDict | |
from dataclasses import dataclass, replace, field | |
from functools import partial | |
from typing import Callable, Optional, Union, Tuple, List | |
import torch | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, checkpoint_seq, named_apply | |
from .fx_features import register_notrace_function | |
from .layers import Mlp, ConvMlp, DropPath, ClassifierHead, trunc_normal_tf_, LayerNorm2d, LayerNorm | |
from .layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d | |
from .layers import to_2tuple, extend_tuple, make_divisible, _assert | |
from .registry import register_model | |
from .vision_transformer_relpos import RelPosMlp, RelPosBias # FIXME move these to common location | |
__all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.95, 'interpolation': 'bicubic', | |
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), | |
'first_conv': 'stem.conv1', 'classifier': 'head.fc', | |
'fixed_input_size': True, | |
**kwargs | |
} | |
default_cfgs = { | |
# Fiddling with configs / defaults / still pretraining | |
'coatnet_pico_rw_224': _cfg(url=''), | |
'coatnet_nano_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth', | |
crop_pct=0.9), | |
'coatnet_0_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'), | |
'coatnet_1_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth' | |
), | |
'coatnet_2_rw_224': _cfg(url=''), | |
'coatnet_3_rw_224': _cfg(url=''), | |
# Highly experimental configs | |
'coatnet_bn_0_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth', | |
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, | |
crop_pct=0.95), | |
'coatnet_rmlp_nano_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth', | |
crop_pct=0.9), | |
'coatnet_rmlp_0_rw_224': _cfg(url=''), | |
'coatnet_rmlp_1_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'), | |
'coatnet_rmlp_2_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'), | |
'coatnet_rmlp_3_rw_224': _cfg(url=''), | |
'coatnet_nano_cc_224': _cfg(url=''), | |
'coatnext_nano_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth', | |
crop_pct=0.9), | |
# Trying to be like the CoAtNet paper configs | |
'coatnet_0_224': _cfg(url=''), | |
'coatnet_1_224': _cfg(url=''), | |
'coatnet_2_224': _cfg(url=''), | |
'coatnet_3_224': _cfg(url=''), | |
'coatnet_4_224': _cfg(url=''), | |
'coatnet_5_224': _cfg(url=''), | |
# Experimental configs | |
'maxvit_pico_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_nano_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_tiny_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'), | |
'maxvit_tiny_rw_256': _cfg( | |
url='', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_rmlp_pico_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_rmlp_nano_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_rmlp_tiny_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_rmlp_small_rw_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth', | |
crop_pct=0.9, | |
), | |
'maxvit_rmlp_small_rw_256': _cfg( | |
url='', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxvit_tiny_pm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxxvit_rmlp_nano_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxxvit_rmlp_tiny_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), | |
'maxxvit_rmlp_small_rw_256': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
# Trying to be like the MaxViT paper configs | |
'maxvit_tiny_224': _cfg(url=''), | |
'maxvit_small_224': _cfg(url=''), | |
'maxvit_base_224': _cfg(url=''), | |
'maxvit_large_224': _cfg(url=''), | |
'maxvit_xlarge_224': _cfg(url=''), | |
} | |
class MaxxVitTransformerCfg: | |
dim_head: int = 32 | |
expand_ratio: float = 4.0 | |
expand_first: bool = True | |
shortcut_bias: bool = True | |
attn_bias: bool = True | |
attn_drop: float = 0. | |
proj_drop: float = 0. | |
pool_type: str = 'avg2' | |
rel_pos_type: str = 'bias' | |
rel_pos_dim: int = 512 # for relative position types w/ MLP | |
partition_ratio: int = 32 | |
window_size: Optional[Tuple[int, int]] = None | |
grid_size: Optional[Tuple[int, int]] = None | |
init_values: Optional[float] = None | |
act_layer: str = 'gelu' | |
norm_layer: str = 'layernorm2d' | |
norm_layer_cl: str = 'layernorm' | |
norm_eps: float = 1e-6 | |
def __post_init__(self): | |
if self.grid_size is not None: | |
self.grid_size = to_2tuple(self.grid_size) | |
if self.window_size is not None: | |
self.window_size = to_2tuple(self.window_size) | |
if self.grid_size is None: | |
self.grid_size = self.window_size | |
class MaxxVitConvCfg: | |
block_type: str = 'mbconv' | |
expand_ratio: float = 4.0 | |
expand_output: bool = True # calculate expansion channels from output (vs input chs) | |
kernel_size: int = 3 | |
group_size: int = 1 # 1 == depthwise | |
pre_norm_act: bool = False # activation after pre-norm | |
output_bias: bool = True # bias for shortcut + final 1x1 projection conv | |
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw' | |
pool_type: str = 'avg2' | |
downsample_pool_type: str = 'avg2' | |
attn_early: bool = False # apply attn between conv2 and norm2, instead of after norm2 | |
attn_layer: str = 'se' | |
attn_act_layer: str = 'silu' | |
attn_ratio: float = 0.25 | |
init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv | |
act_layer: str = 'gelu' | |
norm_layer: str = '' | |
norm_layer_cl: str = '' | |
norm_eps: Optional[float] = None | |
def __post_init__(self): | |
# mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args | |
assert self.block_type in ('mbconv', 'convnext') | |
use_mbconv = self.block_type == 'mbconv' | |
if not self.norm_layer: | |
self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d' | |
if not self.norm_layer_cl and not use_mbconv: | |
self.norm_layer_cl = 'layernorm' | |
if self.norm_eps is None: | |
self.norm_eps = 1e-5 if use_mbconv else 1e-6 | |
self.downsample_pool_type = self.downsample_pool_type or self.pool_type | |
class MaxxVitCfg: | |
embed_dim: Tuple[int, ...] = (96, 192, 384, 768) | |
depths: Tuple[int, ...] = (2, 3, 5, 2) | |
block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T') | |
stem_width: Union[int, Tuple[int, int]] = 64 | |
stem_bias: bool = True | |
conv_cfg: MaxxVitConvCfg = field(default_factory=MaxxVitConvCfg) | |
transformer_cfg: MaxxVitTransformerCfg = field(default_factory=MaxxVitTransformerCfg) | |
weight_init: str = 'vit_eff' | |
def _rw_coat_cfg( | |
stride_mode='pool', | |
pool_type='avg2', | |
conv_output_bias=False, | |
conv_attn_early=False, | |
conv_attn_act_layer='relu', | |
conv_norm_layer='', | |
transformer_shortcut_bias=True, | |
transformer_norm_layer='layernorm2d', | |
transformer_norm_layer_cl='layernorm', | |
init_values=None, | |
rel_pos_type='bias', | |
rel_pos_dim=512, | |
): | |
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit | |
# Common differences for initial timm models: | |
# - pre-norm layer in MZBConv included an activation after norm | |
# - mbconv expansion calculated from input instead of output chs | |
# - mbconv shortcut and final 1x1 conv did not have a bias | |
# - SE act layer was relu, not silu | |
# - mbconv uses silu in timm, not gelu | |
# - expansion in attention block done via output proj, not input proj | |
# Variable differences (evolved over training initial models): | |
# - avg pool with kernel_size=2 favoured downsampling (instead of maxpool for coat) | |
# - SE attention was between conv2 and norm/act | |
# - default to avg pool for mbconv downsample instead of 1x1 or dw conv | |
# - transformer block shortcut has no bias | |
return dict( | |
conv_cfg=MaxxVitConvCfg( | |
stride_mode=stride_mode, | |
pool_type=pool_type, | |
pre_norm_act=True, | |
expand_output=False, | |
output_bias=conv_output_bias, | |
attn_early=conv_attn_early, | |
attn_act_layer=conv_attn_act_layer, | |
act_layer='silu', | |
norm_layer=conv_norm_layer, | |
), | |
transformer_cfg=MaxxVitTransformerCfg( | |
expand_first=False, | |
shortcut_bias=transformer_shortcut_bias, | |
pool_type=pool_type, | |
init_values=init_values, | |
norm_layer=transformer_norm_layer, | |
norm_layer_cl=transformer_norm_layer_cl, | |
rel_pos_type=rel_pos_type, | |
rel_pos_dim=rel_pos_dim, | |
), | |
) | |
def _rw_max_cfg( | |
stride_mode='dw', | |
pool_type='avg2', | |
conv_output_bias=False, | |
conv_attn_ratio=1 / 16, | |
conv_norm_layer='', | |
transformer_norm_layer='layernorm2d', | |
transformer_norm_layer_cl='layernorm', | |
window_size=None, | |
dim_head=32, | |
init_values=None, | |
rel_pos_type='bias', | |
rel_pos_dim=512, | |
): | |
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit | |
# Differences of initial timm models: | |
# - mbconv expansion calculated from input instead of output chs | |
# - mbconv shortcut and final 1x1 conv did not have a bias | |
# - mbconv uses silu in timm, not gelu | |
# - expansion in attention block done via output proj, not input proj | |
return dict( | |
conv_cfg=MaxxVitConvCfg( | |
stride_mode=stride_mode, | |
pool_type=pool_type, | |
expand_output=False, | |
output_bias=conv_output_bias, | |
attn_ratio=conv_attn_ratio, | |
act_layer='silu', | |
norm_layer=conv_norm_layer, | |
), | |
transformer_cfg=MaxxVitTransformerCfg( | |
expand_first=False, | |
pool_type=pool_type, | |
dim_head=dim_head, | |
window_size=window_size, | |
init_values=init_values, | |
norm_layer=transformer_norm_layer, | |
norm_layer_cl=transformer_norm_layer_cl, | |
rel_pos_type=rel_pos_type, | |
rel_pos_dim=rel_pos_dim, | |
), | |
) | |
def _next_cfg( | |
stride_mode='dw', | |
pool_type='avg2', | |
conv_norm_layer='layernorm2d', | |
conv_norm_layer_cl='layernorm', | |
transformer_norm_layer='layernorm2d', | |
transformer_norm_layer_cl='layernorm', | |
window_size=None, | |
init_values=1e-6, | |
rel_pos_type='mlp', # MLP by default for maxxvit | |
rel_pos_dim=512, | |
): | |
# For experimental models with convnext instead of mbconv | |
init_values = to_2tuple(init_values) | |
return dict( | |
conv_cfg=MaxxVitConvCfg( | |
block_type='convnext', | |
stride_mode=stride_mode, | |
pool_type=pool_type, | |
expand_output=False, | |
init_values=init_values[0], | |
norm_layer=conv_norm_layer, | |
norm_layer_cl=conv_norm_layer_cl, | |
), | |
transformer_cfg=MaxxVitTransformerCfg( | |
expand_first=False, | |
pool_type=pool_type, | |
window_size=window_size, | |
init_values=init_values[1], | |
norm_layer=transformer_norm_layer, | |
norm_layer_cl=transformer_norm_layer_cl, | |
rel_pos_type=rel_pos_type, | |
rel_pos_dim=rel_pos_dim, | |
), | |
) | |
model_cfgs = dict( | |
# Fiddling with configs / defaults / still pretraining | |
coatnet_pico_rw_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 3, 5, 2), | |
stem_width=(32, 64), | |
**_rw_max_cfg( # using newer max defaults here | |
conv_output_bias=True, | |
conv_attn_ratio=0.25, | |
), | |
), | |
coatnet_nano_rw_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(3, 4, 6, 3), | |
stem_width=(32, 64), | |
**_rw_max_cfg( # using newer max defaults here | |
stride_mode='pool', | |
conv_output_bias=True, | |
conv_attn_ratio=0.25, | |
), | |
), | |
coatnet_0_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 3, 7, 2), # deeper than paper '0' model | |
stem_width=(32, 64), | |
**_rw_coat_cfg( | |
conv_attn_early=True, | |
transformer_shortcut_bias=False, | |
), | |
), | |
coatnet_1_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 6, 14, 2), | |
stem_width=(32, 64), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_early=True, | |
transformer_shortcut_bias=False, | |
) | |
), | |
coatnet_2_rw_224=MaxxVitCfg( | |
embed_dim=(128, 256, 512, 1024), | |
depths=(2, 6, 14, 2), | |
stem_width=(64, 128), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_act_layer='silu', | |
init_values=1e-6, | |
), | |
), | |
coatnet_3_rw_224=MaxxVitCfg( | |
embed_dim=(192, 384, 768, 1536), | |
depths=(2, 6, 14, 2), | |
stem_width=(96, 192), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_act_layer='silu', | |
init_values=1e-6, | |
), | |
), | |
# Highly experimental configs | |
coatnet_bn_0_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 3, 7, 2), # deeper than paper '0' model | |
stem_width=(32, 64), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_early=True, | |
transformer_shortcut_bias=False, | |
transformer_norm_layer='batchnorm2d', | |
) | |
), | |
coatnet_rmlp_nano_rw_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(3, 4, 6, 3), | |
stem_width=(32, 64), | |
**_rw_max_cfg( | |
conv_output_bias=True, | |
conv_attn_ratio=0.25, | |
rel_pos_type='mlp', | |
rel_pos_dim=384, | |
), | |
), | |
coatnet_rmlp_0_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 3, 7, 2), # deeper than paper '0' model | |
stem_width=(32, 64), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
rel_pos_type='mlp', | |
), | |
), | |
coatnet_rmlp_1_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 6, 14, 2), | |
stem_width=(32, 64), | |
**_rw_coat_cfg( | |
pool_type='max', | |
conv_attn_early=True, | |
transformer_shortcut_bias=False, | |
rel_pos_type='mlp', | |
rel_pos_dim=384, # was supposed to be 512, woops | |
), | |
), | |
coatnet_rmlp_2_rw_224=MaxxVitCfg( | |
embed_dim=(128, 256, 512, 1024), | |
depths=(2, 6, 14, 2), | |
stem_width=(64, 128), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_act_layer='silu', | |
init_values=1e-6, | |
rel_pos_type='mlp' | |
), | |
), | |
coatnet_rmlp_3_rw_224=MaxxVitCfg( | |
embed_dim=(192, 384, 768, 1536), | |
depths=(2, 6, 14, 2), | |
stem_width=(96, 192), | |
**_rw_coat_cfg( | |
stride_mode='dw', | |
conv_attn_act_layer='silu', | |
init_values=1e-6, | |
rel_pos_type='mlp' | |
), | |
), | |
coatnet_nano_cc_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(3, 4, 6, 3), | |
stem_width=(32, 64), | |
block_type=('C', 'C', ('C', 'T'), ('C', 'T')), | |
**_rw_coat_cfg(), | |
), | |
coatnext_nano_rw_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(3, 4, 6, 3), | |
stem_width=(32, 64), | |
weight_init='normal', | |
**_next_cfg( | |
rel_pos_type='bias', | |
init_values=(1e-5, None) | |
), | |
), | |
# Trying to be like the CoAtNet paper configs | |
coatnet_0_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 3, 5, 2), | |
stem_width=64, | |
), | |
coatnet_1_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 6, 14, 2), | |
stem_width=64, | |
), | |
coatnet_2_224=MaxxVitCfg( | |
embed_dim=(128, 256, 512, 1024), | |
depths=(2, 6, 14, 2), | |
stem_width=128, | |
), | |
coatnet_3_224=MaxxVitCfg( | |
embed_dim=(192, 384, 768, 1536), | |
depths=(2, 6, 14, 2), | |
stem_width=192, | |
), | |
coatnet_4_224=MaxxVitCfg( | |
embed_dim=(192, 384, 768, 1536), | |
depths=(2, 12, 28, 2), | |
stem_width=192, | |
), | |
coatnet_5_224=MaxxVitCfg( | |
embed_dim=(256, 512, 1280, 2048), | |
depths=(2, 12, 28, 2), | |
stem_width=192, | |
), | |
# Experimental MaxVit configs | |
maxvit_pico_rw_256=MaxxVitCfg( | |
embed_dim=(32, 64, 128, 256), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(24, 32), | |
**_rw_max_cfg(), | |
), | |
maxvit_nano_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(1, 2, 3, 1), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(), | |
), | |
maxvit_tiny_rw_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(), | |
), | |
maxvit_tiny_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(), | |
), | |
maxvit_rmlp_pico_rw_256=MaxxVitCfg( | |
embed_dim=(32, 64, 128, 256), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(24, 32), | |
**_rw_max_cfg(rel_pos_type='mlp'), | |
), | |
maxvit_rmlp_nano_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(1, 2, 3, 1), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(rel_pos_type='mlp'), | |
), | |
maxvit_rmlp_tiny_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(rel_pos_type='mlp'), | |
), | |
maxvit_rmlp_small_rw_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg( | |
rel_pos_type='mlp', | |
init_values=1e-6, | |
), | |
), | |
maxvit_rmlp_small_rw_256=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg( | |
rel_pos_type='mlp', | |
init_values=1e-6, | |
), | |
), | |
maxvit_tiny_pm_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('PM',) * 4, | |
stem_width=(32, 64), | |
**_rw_max_cfg(), | |
), | |
maxxvit_rmlp_nano_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(1, 2, 3, 1), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
weight_init='normal', | |
**_next_cfg(), | |
), | |
maxxvit_rmlp_tiny_rw_256=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(32, 64), | |
**_next_cfg(), | |
), | |
maxxvit_rmlp_small_rw_256=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=(48, 96), | |
**_next_cfg(), | |
), | |
# Trying to be like the MaxViT paper configs | |
maxvit_tiny_224=MaxxVitCfg( | |
embed_dim=(64, 128, 256, 512), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=64, | |
), | |
maxvit_small_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 2, 5, 2), | |
block_type=('M',) * 4, | |
stem_width=64, | |
), | |
maxvit_base_224=MaxxVitCfg( | |
embed_dim=(96, 192, 384, 768), | |
depths=(2, 6, 14, 2), | |
block_type=('M',) * 4, | |
stem_width=64, | |
), | |
maxvit_large_224=MaxxVitCfg( | |
embed_dim=(128, 256, 512, 1024), | |
depths=(2, 6, 14, 2), | |
block_type=('M',) * 4, | |
stem_width=128, | |
), | |
maxvit_xlarge_224=MaxxVitCfg( | |
embed_dim=(192, 384, 768, 1536), | |
depths=(2, 6, 14, 2), | |
block_type=('M',) * 4, | |
stem_width=192, | |
), | |
) | |
class Attention2d(nn.Module): | |
""" multi-head attention for 2D NCHW tensors""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
dim_head: int = 32, | |
bias: bool = True, | |
expand_first: bool = True, | |
rel_pos_cls: Callable = None, | |
attn_drop: float = 0., | |
proj_drop: float = 0. | |
): | |
super().__init__() | |
dim_out = dim_out or dim | |
dim_attn = dim_out if expand_first else dim | |
self.num_heads = dim_attn // dim_head | |
self.dim_head = dim_head | |
self.scale = dim_head ** -0.5 | |
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) | |
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): | |
B, C, H, W = x.shape | |
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) | |
attn = (q.transpose(-2, -1) @ k) * self.scale | |
if self.rel_pos is not None: | |
attn = self.rel_pos(attn) | |
elif shared_rel_pos is not None: | |
attn = attn + shared_rel_pos | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class AttentionCl(nn.Module): | |
""" Channels-last multi-head attention (B, ..., C) """ | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
dim_head: int = 32, | |
bias: bool = True, | |
expand_first: bool = True, | |
rel_pos_cls: Callable = None, | |
attn_drop: float = 0., | |
proj_drop: float = 0. | |
): | |
super().__init__() | |
dim_out = dim_out or dim | |
dim_attn = dim_out if expand_first and dim_out > dim else dim | |
assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim' | |
self.num_heads = dim_attn // dim_head | |
self.dim_head = dim_head | |
self.scale = dim_head ** -0.5 | |
self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias) | |
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim_attn, dim_out, bias=bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): | |
B = x.shape[0] | |
restore_shape = x.shape[:-1] | |
q, k, v = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
if self.rel_pos is not None: | |
attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) | |
elif shared_rel_pos is not None: | |
attn = attn + shared_rel_pos | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(restore_shape + (-1,)) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
gamma = self.gamma | |
return x.mul_(gamma) if self.inplace else x * gamma | |
class LayerScale2d(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
gamma = self.gamma.view(1, -1, 1, 1) | |
return x.mul_(gamma) if self.inplace else x * gamma | |
class Downsample2d(nn.Module): | |
""" A downsample pooling module supporting several maxpool and avgpool modes | |
* 'max' - MaxPool2d w/ kernel_size 3, stride 2, padding 1 | |
* 'max2' - MaxPool2d w/ kernel_size = stride = 2 | |
* 'avg' - AvgPool2d w/ kernel_size 3, stride 2, padding 1 | |
* 'avg2' - AvgPool2d w/ kernel_size = stride = 2 | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
pool_type: str = 'avg2', | |
bias: bool = True, | |
): | |
super().__init__() | |
assert pool_type in ('max', 'max2', 'avg', 'avg2') | |
if pool_type == 'max': | |
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
elif pool_type == 'max2': | |
self.pool = nn.MaxPool2d(2) # kernel_size == stride == 2 | |
elif pool_type == 'avg': | |
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False) | |
else: | |
self.pool = nn.AvgPool2d(2) # kernel_size == stride == 2 | |
if dim != dim_out: | |
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) | |
else: | |
self.expand = nn.Identity() | |
def forward(self, x): | |
x = self.pool(x) # spatial downsample | |
x = self.expand(x) # expand chs | |
return x | |
def _init_transformer(module, name, scheme=''): | |
if isinstance(module, (nn.Conv2d, nn.Linear)): | |
if scheme == 'normal': | |
nn.init.normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif scheme == 'trunc_normal': | |
trunc_normal_tf_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif scheme == 'xavier_normal': | |
nn.init.xavier_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
else: | |
# vit like | |
nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
if 'mlp' in name: | |
nn.init.normal_(module.bias, std=1e-6) | |
else: | |
nn.init.zeros_(module.bias) | |
class TransformerBlock2d(nn.Module): | |
""" Transformer block with 2D downsampling | |
'2D' NCHW tensor layout | |
Some gains can be seen on GPU using a 1D / CL block, BUT w/ the need to switch back/forth to NCHW | |
for spatial pooling, the benefit is minimal so ended up using just this variant for CoAt configs. | |
This impl was faster on TPU w/ PT XLA than the 1D experiment. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
stride: int = 1, | |
rel_pos_cls: Callable = None, | |
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
drop_path: float = 0., | |
): | |
super().__init__() | |
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) | |
act_layer = get_act_layer(cfg.act_layer) | |
if stride == 2: | |
self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias) | |
self.norm1 = nn.Sequential(OrderedDict([ | |
('norm', norm_layer(dim)), | |
('down', Downsample2d(dim, dim, pool_type=cfg.pool_type)), | |
])) | |
else: | |
assert dim == dim_out | |
self.shortcut = nn.Identity() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention2d( | |
dim, | |
dim_out, | |
dim_head=cfg.dim_head, | |
expand_first=cfg.expand_first, | |
bias=cfg.attn_bias, | |
rel_pos_cls=rel_pos_cls, | |
attn_drop=cfg.attn_drop, | |
proj_drop=cfg.proj_drop | |
) | |
self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim_out) | |
self.mlp = ConvMlp( | |
in_features=dim_out, | |
hidden_features=int(dim_out * cfg.expand_ratio), | |
act_layer=act_layer, | |
drop=cfg.proj_drop) | |
self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def init_weights(self, scheme=''): | |
named_apply(partial(_init_transformer, scheme=scheme), self) | |
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): | |
x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
def _init_conv(module, name, scheme=''): | |
if isinstance(module, nn.Conv2d): | |
if scheme == 'normal': | |
nn.init.normal_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif scheme == 'trunc_normal': | |
trunc_normal_tf_(module.weight, std=.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif scheme == 'xavier_normal': | |
nn.init.xavier_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
else: | |
# efficientnet like | |
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels | |
fan_out //= module.groups | |
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
def num_groups(group_size, channels): | |
if not group_size: # 0 or None | |
return 1 # normal conv with 1 group | |
else: | |
# NOTE group_size == 1 -> depthwise conv | |
assert channels % group_size == 0 | |
return channels // group_size | |
class MbConvBlock(nn.Module): | |
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand) | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: int, | |
stride: int = 1, | |
dilation: Tuple[int, int] = (1, 1), | |
cfg: MaxxVitConvCfg = MaxxVitConvCfg(), | |
drop_path: float = 0. | |
): | |
super(MbConvBlock, self).__init__() | |
norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps) | |
mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio) | |
groups = num_groups(cfg.group_size, mid_chs) | |
if stride == 2: | |
self.shortcut = Downsample2d(in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias) | |
else: | |
self.shortcut = nn.Identity() | |
assert cfg.stride_mode in ('pool', '1x1', 'dw') | |
stride_pool, stride_1, stride_2 = 1, 1, 1 | |
if cfg.stride_mode == 'pool': | |
# NOTE this is not described in paper, experiment to find faster option that doesn't stride in 1x1 | |
stride_pool, dilation_2 = stride, dilation[1] | |
# FIXME handle dilation of avg pool | |
elif cfg.stride_mode == '1x1': | |
# NOTE I don't like this option described in paper, 1x1 w/ stride throws info away | |
stride_1, dilation_2 = stride, dilation[1] | |
else: | |
stride_2, dilation_2 = stride, dilation[0] | |
self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act) | |
if stride_pool > 1: | |
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type) | |
else: | |
self.down = nn.Identity() | |
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1) | |
self.norm1 = norm_act_layer(mid_chs) | |
self.conv2_kxk = create_conv2d( | |
mid_chs, mid_chs, cfg.kernel_size, stride=stride_2, dilation=dilation_2, groups=groups) | |
attn_kwargs = {} | |
if isinstance(cfg.attn_layer, str): | |
if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca': | |
attn_kwargs['act_layer'] = cfg.attn_act_layer | |
attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs)) | |
# two different orderings for SE and norm2 (due to some weights and trials using SE before norm2) | |
if cfg.attn_early: | |
self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) | |
self.norm2 = norm_act_layer(mid_chs) | |
self.se = None | |
else: | |
self.se_early = None | |
self.norm2 = norm_act_layer(mid_chs) | |
self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) | |
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def init_weights(self, scheme=''): | |
named_apply(partial(_init_conv, scheme=scheme), self) | |
def forward(self, x): | |
shortcut = self.shortcut(x) | |
x = self.pre_norm(x) | |
x = self.down(x) | |
# 1x1 expansion conv & norm-act | |
x = self.conv1_1x1(x) | |
x = self.norm1(x) | |
# depthwise / grouped 3x3 conv w/ SE (or other) channel attention & norm-act | |
x = self.conv2_kxk(x) | |
if self.se_early is not None: | |
x = self.se_early(x) | |
x = self.norm2(x) | |
if self.se is not None: | |
x = self.se(x) | |
# 1x1 linear projection to output width | |
x = self.conv3_1x1(x) | |
x = self.drop_path(x) + shortcut | |
return x | |
class ConvNeXtBlock(nn.Module): | |
""" ConvNeXt Block | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: Optional[int] = None, | |
kernel_size: int = 7, | |
stride: int = 1, | |
dilation: Tuple[int, int] = (1, 1), | |
cfg: MaxxVitConvCfg = MaxxVitConvCfg(), | |
conv_mlp: bool = True, | |
drop_path: float = 0. | |
): | |
super().__init__() | |
out_chs = out_chs or in_chs | |
act_layer = get_act_layer(cfg.act_layer) | |
if conv_mlp: | |
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) | |
mlp_layer = ConvMlp | |
else: | |
assert 'layernorm' in cfg.norm_layer | |
norm_layer = LayerNorm | |
mlp_layer = Mlp | |
self.use_conv_mlp = conv_mlp | |
if stride == 2: | |
self.shortcut = Downsample2d(in_chs, out_chs) | |
elif in_chs != out_chs: | |
self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias) | |
else: | |
self.shortcut = nn.Identity() | |
assert cfg.stride_mode in ('pool', 'dw') | |
stride_pool, stride_dw = 1, 1 | |
# FIXME handle dilation? | |
if cfg.stride_mode == 'pool': | |
stride_pool = stride | |
else: | |
stride_dw = stride | |
if stride_pool == 2: | |
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type) | |
else: | |
self.down = nn.Identity() | |
self.conv_dw = create_conv2d( | |
in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1], | |
depthwise=True, bias=cfg.output_bias) | |
self.norm = norm_layer(out_chs) | |
self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer) | |
if conv_mlp: | |
self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() | |
else: | |
self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
shortcut = self.shortcut(x) | |
x = self.down(x) | |
x = self.conv_dw(x) | |
if self.use_conv_mlp: | |
x = self.norm(x) | |
x = self.mlp(x) | |
x = self.ls(x) | |
else: | |
x = x.permute(0, 2, 3, 1) | |
x = self.norm(x) | |
x = self.mlp(x) | |
x = self.ls(x) | |
x = x.permute(0, 3, 1, 2) | |
x = self.drop_path(x) + shortcut | |
return x | |
def window_partition(x, window_size: List[int]): | |
B, H, W, C = x.shape | |
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') | |
_assert(W % window_size[1] == 0, '') | |
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) | |
return windows | |
# reason: int argument is a Proxy | |
def window_reverse(windows, window_size: List[int], img_size: List[int]): | |
H, W = img_size | |
C = windows.shape[-1] | |
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) | |
return x | |
def grid_partition(x, grid_size: List[int]): | |
B, H, W, C = x.shape | |
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') | |
_assert(W % grid_size[1] == 0, '') | |
x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C) | |
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C) | |
return windows | |
# reason: int argument is a Proxy | |
def grid_reverse(windows, grid_size: List[int], img_size: List[int]): | |
H, W = img_size | |
C = windows.shape[-1] | |
x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C) | |
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C) | |
return x | |
def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size): | |
rel_pos_cls = None | |
if cfg.rel_pos_type == 'mlp': | |
rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim) | |
elif cfg.rel_pos_type == 'bias': | |
rel_pos_cls = partial(RelPosBias, window_size=window_size) | |
return rel_pos_cls | |
class PartitionAttentionCl(nn.Module): | |
""" Grid or Block partition + Attn + FFN. | |
NxC 'channels last' tensor layout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
partition_type: str = 'block', | |
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
drop_path: float = 0., | |
): | |
super().__init__() | |
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last | |
act_layer = get_act_layer(cfg.act_layer) | |
self.partition_block = partition_type == 'block' | |
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) | |
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) | |
self.norm1 = norm_layer(dim) | |
self.attn = AttentionCl( | |
dim, | |
dim, | |
dim_head=cfg.dim_head, | |
bias=cfg.attn_bias, | |
rel_pos_cls=rel_pos_cls, | |
attn_drop=cfg.attn_drop, | |
proj_drop=cfg.proj_drop, | |
) | |
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=int(dim * cfg.expand_ratio), | |
act_layer=act_layer, | |
drop=cfg.proj_drop) | |
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def _partition_attn(self, x): | |
img_size = x.shape[1:3] | |
if self.partition_block: | |
partitioned = window_partition(x, self.partition_size) | |
else: | |
partitioned = grid_partition(x, self.partition_size) | |
partitioned = self.attn(partitioned) | |
if self.partition_block: | |
x = window_reverse(partitioned, self.partition_size, img_size) | |
else: | |
x = grid_reverse(partitioned, self.partition_size, img_size) | |
return x | |
def forward(self, x): | |
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class ParallelPartitionAttention(nn.Module): | |
""" Experimental. Grid and Block partition + single FFN | |
NxC tensor layout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
drop_path: float = 0., | |
): | |
super().__init__() | |
assert dim % 2 == 0 | |
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last | |
act_layer = get_act_layer(cfg.act_layer) | |
assert cfg.window_size == cfg.grid_size | |
self.partition_size = to_2tuple(cfg.window_size) | |
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) | |
self.norm1 = norm_layer(dim) | |
self.attn_block = AttentionCl( | |
dim, | |
dim // 2, | |
dim_head=cfg.dim_head, | |
bias=cfg.attn_bias, | |
rel_pos_cls=rel_pos_cls, | |
attn_drop=cfg.attn_drop, | |
proj_drop=cfg.proj_drop, | |
) | |
self.attn_grid = AttentionCl( | |
dim, | |
dim // 2, | |
dim_head=cfg.dim_head, | |
bias=cfg.attn_bias, | |
rel_pos_cls=rel_pos_cls, | |
attn_drop=cfg.attn_drop, | |
proj_drop=cfg.proj_drop, | |
) | |
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=int(dim * cfg.expand_ratio), | |
out_features=dim, | |
act_layer=act_layer, | |
drop=cfg.proj_drop) | |
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def _partition_attn(self, x): | |
img_size = x.shape[1:3] | |
partitioned_block = window_partition(x, self.partition_size) | |
partitioned_block = self.attn_block(partitioned_block) | |
x_window = window_reverse(partitioned_block, self.partition_size, img_size) | |
partitioned_grid = grid_partition(x, self.partition_size) | |
partitioned_grid = self.attn_grid(partitioned_grid) | |
x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size) | |
return torch.cat([x_window, x_grid], dim=-1) | |
def forward(self, x): | |
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
def window_partition_nchw(x, window_size: List[int]): | |
B, C, H, W = x.shape | |
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') | |
_assert(W % window_size[1] == 0, '') | |
x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1]) | |
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1]) | |
return windows | |
# reason: int argument is a Proxy | |
def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]): | |
H, W = img_size | |
C = windows.shape[1] | |
x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1]) | |
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W) | |
return x | |
def grid_partition_nchw(x, grid_size: List[int]): | |
B, C, H, W = x.shape | |
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') | |
_assert(W % grid_size[1] == 0, '') | |
x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1]) | |
windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1]) | |
return windows | |
# reason: int argument is a Proxy | |
def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]): | |
H, W = img_size | |
C = windows.shape[1] | |
x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1]) | |
x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W) | |
return x | |
class PartitionAttention2d(nn.Module): | |
""" Grid or Block partition + Attn + FFN | |
'2D' NCHW tensor layout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
partition_type: str = 'block', | |
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
drop_path: float = 0., | |
): | |
super().__init__() | |
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) # NOTE this block is channels-last | |
act_layer = get_act_layer(cfg.act_layer) | |
self.partition_block = partition_type == 'block' | |
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) | |
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention2d( | |
dim, | |
dim, | |
dim_head=cfg.dim_head, | |
bias=cfg.attn_bias, | |
rel_pos_cls=rel_pos_cls, | |
attn_drop=cfg.attn_drop, | |
proj_drop=cfg.proj_drop, | |
) | |
self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = ConvMlp( | |
in_features=dim, | |
hidden_features=int(dim * cfg.expand_ratio), | |
act_layer=act_layer, | |
drop=cfg.proj_drop) | |
self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def _partition_attn(self, x): | |
img_size = x.shape[-2:] | |
if self.partition_block: | |
partitioned = window_partition_nchw(x, self.partition_size) | |
else: | |
partitioned = grid_partition_nchw(x, self.partition_size) | |
partitioned = self.attn(partitioned) | |
if self.partition_block: | |
x = window_reverse_nchw(partitioned, self.partition_size, img_size) | |
else: | |
x = grid_reverse_nchw(partitioned, self.partition_size, img_size) | |
return x | |
def forward(self, x): | |
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class MaxxVitBlock(nn.Module): | |
""" MaxVit conv, window partition + FFN , grid partition + FFN | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
stride: int = 1, | |
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), | |
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
use_nchw_attn: bool = False, # FIXME move to cfg? True is ~20-30% faster on TPU, 5-10% slower on GPU | |
drop_path: float = 0., | |
): | |
super().__init__() | |
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock | |
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) | |
attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) | |
partition_layer = PartitionAttention2d if use_nchw_attn else PartitionAttentionCl | |
self.nchw_attn = use_nchw_attn | |
self.attn_block = partition_layer(**attn_kwargs) | |
self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs) | |
def init_weights(self, scheme=''): | |
named_apply(partial(_init_transformer, scheme=scheme), self.attn_block) | |
named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid) | |
named_apply(partial(_init_conv, scheme=scheme), self.conv) | |
def forward(self, x): | |
# NCHW format | |
x = self.conv(x) | |
if not self.nchw_attn: | |
x = x.permute(0, 2, 3, 1) # to NHWC (channels-last) | |
x = self.attn_block(x) | |
x = self.attn_grid(x) | |
if not self.nchw_attn: | |
x = x.permute(0, 3, 1, 2) # back to NCHW | |
return x | |
class ParallelMaxxVitBlock(nn.Module): | |
""" MaxVit block with parallel cat(window + grid), one FF | |
Experimental timm block. | |
""" | |
def __init__( | |
self, | |
dim, | |
dim_out, | |
stride=1, | |
num_conv=2, | |
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), | |
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
drop_path=0., | |
): | |
super().__init__() | |
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock | |
if num_conv > 1: | |
convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)] | |
convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1) | |
self.conv = nn.Sequential(*convs) | |
else: | |
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) | |
self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) | |
def init_weights(self, scheme=''): | |
named_apply(partial(_init_transformer, scheme=scheme), self.attn) | |
named_apply(partial(_init_conv, scheme=scheme), self.conv) | |
def forward(self, x): | |
x = self.conv(x) | |
x = x.permute(0, 2, 3, 1) | |
x = self.attn(x) | |
x = x.permute(0, 3, 1, 2) | |
return x | |
class MaxxVitStage(nn.Module): | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: int, | |
stride: int = 2, | |
depth: int = 4, | |
feat_size: Tuple[int, int] = (14, 14), | |
block_types: Union[str, Tuple[str]] = 'C', | |
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), | |
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), | |
drop_path: Union[float, List[float]] = 0., | |
): | |
super().__init__() | |
self.grad_checkpointing = False | |
block_types = extend_tuple(block_types, depth) | |
blocks = [] | |
for i, t in enumerate(block_types): | |
block_stride = stride if i == 0 else 1 | |
assert t in ('C', 'T', 'M', 'PM') | |
if t == 'C': | |
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock | |
blocks += [conv_cls( | |
in_chs, | |
out_chs, | |
stride=block_stride, | |
cfg=conv_cfg, | |
drop_path=drop_path[i], | |
)] | |
elif t == 'T': | |
rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size) | |
blocks += [TransformerBlock2d( | |
in_chs, | |
out_chs, | |
stride=block_stride, | |
rel_pos_cls=rel_pos_cls, | |
cfg=transformer_cfg, | |
drop_path=drop_path[i], | |
)] | |
elif t == 'M': | |
blocks += [MaxxVitBlock( | |
in_chs, | |
out_chs, | |
stride=block_stride, | |
conv_cfg=conv_cfg, | |
transformer_cfg=transformer_cfg, | |
drop_path=drop_path[i], | |
)] | |
elif t == 'PM': | |
blocks += [ParallelMaxxVitBlock( | |
in_chs, | |
out_chs, | |
stride=block_stride, | |
conv_cfg=conv_cfg, | |
transformer_cfg=transformer_cfg, | |
drop_path=drop_path[i], | |
)] | |
in_chs = out_chs | |
self.blocks = nn.Sequential(*blocks) | |
def forward(self, x): | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
return x | |
class Stem(nn.Module): | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: int, | |
kernel_size: int = 3, | |
act_layer: str = 'gelu', | |
norm_layer: str = 'batchnorm2d', | |
norm_eps: float = 1e-5, | |
): | |
super().__init__() | |
if not isinstance(out_chs, (list, tuple)): | |
out_chs = to_2tuple(out_chs) | |
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) | |
self.out_chs = out_chs[-1] | |
self.stride = 2 | |
self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2) | |
self.norm1 = norm_act_layer(out_chs[0]) | |
self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1) | |
def init_weights(self, scheme=''): | |
named_apply(partial(_init_conv, scheme=scheme), self) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.conv2(x) | |
return x | |
def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]): | |
if cfg.window_size is not None: | |
assert cfg.grid_size | |
return cfg | |
partition_size = img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio | |
cfg = replace(cfg, window_size=partition_size, grid_size=partition_size) | |
return cfg | |
class MaxxVit(nn.Module): | |
""" CoaTNet + MaxVit base model. | |
Highly configurable for different block compositions, tensor layouts, pooling types. | |
""" | |
def __init__( | |
self, | |
cfg: MaxxVitCfg, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: str = 'avg', | |
drop_rate: float = 0., | |
drop_path_rate: float = 0. | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size) | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = cfg.embed_dim[-1] | |
self.embed_dim = cfg.embed_dim | |
self.drop_rate = drop_rate | |
self.grad_checkpointing = False | |
self.stem = Stem( | |
in_chs=in_chans, | |
out_chs=cfg.stem_width, | |
act_layer=cfg.conv_cfg.act_layer, | |
norm_layer=cfg.conv_cfg.norm_layer, | |
norm_eps=cfg.conv_cfg.norm_eps, | |
) | |
stride = self.stem.stride | |
feat_size = tuple([i // s for i, s in zip(img_size, to_2tuple(stride))]) | |
num_stages = len(cfg.embed_dim) | |
assert len(cfg.depths) == num_stages | |
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] | |
in_chs = self.stem.out_chs | |
stages = [] | |
for i in range(num_stages): | |
stage_stride = 2 | |
out_chs = cfg.embed_dim[i] | |
feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size]) | |
stages += [MaxxVitStage( | |
in_chs, | |
out_chs, | |
depth=cfg.depths[i], | |
block_types=cfg.block_type[i], | |
conv_cfg=cfg.conv_cfg, | |
transformer_cfg=transformer_cfg, | |
feat_size=feat_size, | |
drop_path=dpr[i], | |
)] | |
stride *= stage_stride | |
in_chs = out_chs | |
self.stages = nn.Sequential(*stages) | |
final_norm_layer = get_norm_layer(cfg.transformer_cfg.norm_layer) | |
self.norm = final_norm_layer(self.num_features, eps=cfg.transformer_cfg.norm_eps) | |
# Classifier head | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) | |
# Weight init (default PyTorch init works well for AdamW if scheme not set) | |
assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff') | |
if cfg.weight_init: | |
named_apply(partial(self._init_weights, scheme=cfg.weight_init), self) | |
def _init_weights(self, module, name, scheme=''): | |
if hasattr(module, 'init_weights'): | |
try: | |
module.init_weights(scheme=scheme) | |
except TypeError: | |
module.init_weights() | |
def no_weight_decay(self): | |
return { | |
k for k, _ in self.named_parameters() | |
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', # stem and embed | |
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
for s in self.stages: | |
s.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head.fc | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is None: | |
global_pool = self.head.global_pool.pool_type | |
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
def forward_features(self, x): | |
x = self.stem(x) | |
x = self.stages(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=pre_logits) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
MaxxVit, variant, pretrained, | |
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], | |
feature_cfg=dict(flatten_sequential=True), | |
**kwargs) | |
def coatnet_pico_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_nano_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_0_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_1_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_2_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_3_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_bn_0_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_nano_cc_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs) | |
def coatnext_nano_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs) | |
def coatnet_0_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs) | |
def coatnet_1_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs) | |
def coatnet_2_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs) | |
def coatnet_3_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs) | |
def coatnet_4_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs) | |
def coatnet_5_224(pretrained=False, **kwargs): | |
return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs) | |
def maxvit_pico_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_nano_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_tiny_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs) | |
def maxvit_tiny_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs) | |
def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_tiny_pm_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs) | |
def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) | |
def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) | |
def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs): | |
return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) | |
def maxvit_tiny_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_tiny_224', pretrained=pretrained, **kwargs) | |
def maxvit_small_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_small_224', pretrained=pretrained, **kwargs) | |
def maxvit_base_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_base_224', pretrained=pretrained, **kwargs) | |
def maxvit_large_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_large_224', pretrained=pretrained, **kwargs) | |
def maxvit_xlarge_224(pretrained=False, **kwargs): | |
return _create_maxxvit('maxvit_xlarge_224', pretrained=pretrained, **kwargs) | |