gartajackhats1985's picture
Upload 171 files
c37b2dd verified
raw
history blame
38 kB
import os
import sys
import numpy as np
import torch
import cv2
from PIL import Image
import folder_paths
import comfy.utils
import time
import copy
import dill
import yaml
from ultralytics import YOLO
current_file_path = os.path.abspath(__file__)
current_directory = os.path.dirname(current_file_path)
from .LivePortrait.live_portrait_wrapper import LivePortraitWrapper
from .LivePortrait.utils.camera import get_rotation_matrix
from .LivePortrait.config.inference_config import InferenceConfig
from .LivePortrait.modules.spade_generator import SPADEDecoder
from .LivePortrait.modules.warping_network import WarpingNetwork
from .LivePortrait.modules.motion_extractor import MotionExtractor
from .LivePortrait.modules.appearance_feature_extractor import AppearanceFeatureExtractor
from .LivePortrait.modules.stitching_retargeting_network import StitchingRetargetingNetwork
from collections import OrderedDict
cur_device = None
def get_device():
global cur_device
if cur_device == None:
if torch.cuda.is_available():
cur_device = torch.device('cuda')
print("Uses CUDA device.")
elif torch.backends.mps.is_available():
cur_device = torch.device('mps')
print("Uses MPS device.")
else:
cur_device = torch.device('cpu')
print("Uses CPU device.")
return cur_device
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def rgb_crop(rgb, region):
return rgb[region[1]:region[3], region[0]:region[2]]
def rgb_crop_batch(rgbs, region):
return rgbs[:, region[1]:region[3], region[0]:region[2]]
def get_rgb_size(rgb):
return rgb.shape[1], rgb.shape[0]
def create_transform_matrix(x, y, s_x, s_y):
return np.float32([[s_x, 0, x], [0, s_y, y]])
def get_model_dir(m):
try:
return folder_paths.get_folder_paths(m)[0]
except:
return os.path.join(folder_paths.models_dir, m)
def calc_crop_limit(center, img_size, crop_size):
pos = center - crop_size / 2
if pos < 0:
crop_size += pos * 2
pos = 0
pos2 = pos + crop_size
if img_size < pos2:
crop_size -= (pos2 - img_size) * 2
pos2 = img_size
pos = pos2 - crop_size
return pos, pos2, crop_size
def retargeting(delta_out, driving_exp, factor, idxes):
for idx in idxes:
#delta_out[0, idx] -= src_exp[0, idx] * factor
delta_out[0, idx] += driving_exp[0, idx] * factor
class PreparedSrcImg:
def __init__(self, src_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori):
self.src_rgb = src_rgb
self.crop_trans_m = crop_trans_m
self.x_s_info = x_s_info
self.f_s_user = f_s_user
self.x_s_user = x_s_user
self.mask_ori = mask_ori
import requests
from tqdm import tqdm
class LP_Engine:
pipeline = None
detect_model = None
mask_img = None
temp_img_idx = 0
def get_temp_img_name(self):
self.temp_img_idx += 1
return "expression_edit_preview" + str(self.temp_img_idx) + ".png"
def download_model(_, file_path, model_url):
print('AdvancedLivePortrait: Downloading model...')
response = requests.get(model_url, stream=True)
try:
if response.status_code == 200:
total_size = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
# tqdm will display a progress bar
with open(file_path, 'wb') as file, tqdm(
desc='Downloading',
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(block_size):
bar.update(len(data))
file.write(data)
except requests.exceptions.RequestException as err:
print('AdvancedLivePortrait: Model download failed: {err}')
print(f'AdvancedLivePortrait: Download it manually from: {model_url}')
print(f'AdvancedLivePortrait: And put it in {file_path}')
except Exception as e:
print(f'AdvancedLivePortrait: An unexpected error occurred: {e}')
def remove_ddp_dumplicate_key(_, state_dict):
state_dict_new = OrderedDict()
for key in state_dict.keys():
state_dict_new[key.replace('module.', '')] = state_dict[key]
return state_dict_new
def filter_for_model(_, checkpoint, prefix):
filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
key.startswith(prefix)}
return filtered_checkpoint
def load_model(self, model_config, model_type):
device = get_device()
if model_type == 'stitching_retargeting_module':
ckpt_path = os.path.join(get_model_dir("liveportrait"), "retargeting_models", model_type + ".pth")
else:
ckpt_path = os.path.join(get_model_dir("liveportrait"), "base_models", model_type + ".pth")
is_safetensors = None
if os.path.isfile(ckpt_path) == False:
is_safetensors = True
ckpt_path = os.path.join(get_model_dir("liveportrait"), model_type + ".safetensors")
if os.path.isfile(ckpt_path) == False:
self.download_model(ckpt_path,
"https://huggingface.co/Kijai/LivePortrait_safetensors/resolve/main/" + model_type + ".safetensors")
model_params = model_config['model_params'][f'{model_type}_params']
if model_type == 'appearance_feature_extractor':
model = AppearanceFeatureExtractor(**model_params).to(device)
elif model_type == 'motion_extractor':
model = MotionExtractor(**model_params).to(device)
elif model_type == 'warping_module':
model = WarpingNetwork(**model_params).to(device)
elif model_type == 'spade_generator':
model = SPADEDecoder(**model_params).to(device)
elif model_type == 'stitching_retargeting_module':
# Special handling for stitching and retargeting module
config = model_config['model_params']['stitching_retargeting_module_params']
checkpoint = comfy.utils.load_torch_file(ckpt_path)
stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
if is_safetensors:
stitcher.load_state_dict(self.filter_for_model(checkpoint, 'retarget_shoulder'))
else:
stitcher.load_state_dict(self.remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
stitcher = stitcher.to(device)
stitcher.eval()
return {
'stitching': stitcher,
}
else:
raise ValueError(f"Unknown model type: {model_type}")
model.load_state_dict(comfy.utils.load_torch_file(ckpt_path))
model.eval()
return model
def load_models(self):
model_path = get_model_dir("liveportrait")
if not os.path.exists(model_path):
os.mkdir(model_path)
model_config_path = os.path.join(current_directory, 'LivePortrait', 'config', 'models.yaml')
model_config = yaml.safe_load(open(model_config_path, 'r'))
appearance_feature_extractor = self.load_model(model_config, 'appearance_feature_extractor')
motion_extractor = self.load_model(model_config, 'motion_extractor')
warping_module = self.load_model(model_config, 'warping_module')
spade_generator = self.load_model(model_config, 'spade_generator')
stitching_retargeting_module = self.load_model(model_config, 'stitching_retargeting_module')
self.pipeline = LivePortraitWrapper(InferenceConfig(), appearance_feature_extractor, motion_extractor, warping_module, spade_generator, stitching_retargeting_module)
def get_detect_model(self):
if self.detect_model == None:
model_dir = get_model_dir("ultralytics")
if not os.path.exists(model_dir): os.mkdir(model_dir)
model_path = os.path.join(model_dir, "face_yolov8n.pt")
if not os.path.exists(model_path):
self.download_model(model_path, "https://huggingface.co/Bingsu/adetailer/resolve/main/face_yolov8n.pt")
self.detect_model = YOLO(model_path)
return self.detect_model
def get_face_bboxes(self, image_rgb):
detect_model = self.get_detect_model()
pred = detect_model(image_rgb, conf=0.7, device="")
return pred[0].boxes.xyxy.cpu().numpy()
def detect_face(self, image_rgb, crop_factor, sort = True):
bboxes = self.get_face_bboxes(image_rgb)
w, h = get_rgb_size(image_rgb)
print(f"w, h:{w, h}")
cx = w / 2
min_diff = w
best_box = None
for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
if bbox_w < 30: continue
diff = abs(cx - (x1 + bbox_w / 2))
if diff < min_diff:
best_box = [x1, y1, x2, y2]
print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
min_diff = diff
if best_box == None:
print("Failed to detect face!!")
return [0, 0, w, h]
x1, y1, x2, y2 = best_box
#for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
crop_w = max(crop_h, crop_w)
crop_h = crop_w
kernel_x = int(x1 + bbox_w / 2)
kernel_y = int(y1 + bbox_h / 2)
new_x1 = int(kernel_x - crop_w / 2)
new_x2 = int(kernel_x + crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
new_y2 = int(kernel_y + crop_h / 2)
if not sort:
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
elif w < new_x2:
new_x1 -= (new_x2 - w)
new_x2 = w
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
elif h < new_y2:
new_y1 -= (new_y2 - h)
new_y2 = h
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
if w < new_x2 and h < new_y2:
over_x = new_x2 - w
over_y = new_y2 - h
over_min = min(over_x, over_y)
new_x2 -= over_min
new_y2 -= over_min
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
def calc_face_region(self, square, dsize):
region = copy.deepcopy(square)
is_changed = False
if dsize[0] < region[2]:
region[2] = dsize[0]
is_changed = True
if dsize[1] < region[3]:
region[3] = dsize[1]
is_changed = True
return region, is_changed
def expand_img(self, rgb_img, square):
#new_img = rgb_crop(rgb_img, face_region)
crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
cv2.INTER_LINEAR)
return new_img
def get_pipeline(self):
if self.pipeline == None:
print("Load pipeline...")
self.load_models()
return self.pipeline
def prepare_src_image(self, img):
h, w = img.shape[:2]
input_shape = [256,256]
if h != input_shape[0] or w != input_shape[1]:
if 256 < h: interpolation = cv2.INTER_AREA
else: interpolation = cv2.INTER_LINEAR
x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
else:
x = img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(get_device())
return x
def GetMaskImg(self):
if self.mask_img is None:
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "./LivePortrait/utils/resources/mask_template.png")
self.mask_img = cv2.imread(path, cv2.IMREAD_COLOR)
return self.mask_img
def crop_face(self, img_rgb, crop_factor):
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
return face_img
def prepare_source(self, source_image, crop_factor, is_video = False, tracking = False):
print("Prepare source...")
engine = self.get_pipeline()
source_image_np = (source_image * 255).byte().numpy()
img_rgb = source_image_np[0]
psi_list = []
for img_rgb in source_image_np:
if tracking or len(psi_list) == 0:
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
s_x = (face_region[2] - face_region[0]) / 512.
s_y = (face_region[3] - face_region[1]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
mask_ori = cv2.warpAffine(self.GetMaskImg(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
mask_ori = mask_ori.astype(np.float32) / 255.
if is_changed:
s = (crop_region[2] - crop_region[0]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
i_s = self.prepare_src_image(face_img)
x_s_info = engine.get_kp_info(i_s)
f_s_user = engine.extract_feature_3d(i_s)
x_s_user = engine.transform_keypoint(x_s_info)
psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
if is_video == False:
return psi
psi_list.append(psi)
return psi_list
def prepare_driving_video(self, face_images):
print("Prepare driving video...")
pipeline = self.get_pipeline()
f_img_np = (face_images * 255).byte().numpy()
out_list = []
for f_img in f_img_np:
i_d = self.prepare_src_image(f_img)
d_info = pipeline.get_kp_info(i_d)
out_list.append(d_info)
return out_list
def calc_fe(_, x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll):
x_d_new[0, 20, 1] += smile * -0.01
x_d_new[0, 14, 1] += smile * -0.02
x_d_new[0, 17, 1] += smile * 0.0065
x_d_new[0, 17, 2] += smile * 0.003
x_d_new[0, 13, 1] += smile * -0.00275
x_d_new[0, 16, 1] += smile * -0.00275
x_d_new[0, 3, 1] += smile * -0.0035
x_d_new[0, 7, 1] += smile * -0.0035
x_d_new[0, 19, 1] += mouth * 0.001
x_d_new[0, 19, 2] += mouth * 0.0001
x_d_new[0, 17, 1] += mouth * -0.0001
rotate_pitch -= mouth * 0.05
x_d_new[0, 20, 2] += eee * -0.001
x_d_new[0, 20, 1] += eee * -0.001
#x_d_new[0, 19, 1] += eee * 0.0006
x_d_new[0, 14, 1] += eee * -0.001
x_d_new[0, 14, 1] += woo * 0.001
x_d_new[0, 3, 1] += woo * -0.0005
x_d_new[0, 7, 1] += woo * -0.0005
x_d_new[0, 17, 2] += woo * -0.0005
x_d_new[0, 11, 1] += wink * 0.001
x_d_new[0, 13, 1] += wink * -0.0003
x_d_new[0, 17, 0] += wink * 0.0003
x_d_new[0, 17, 1] += wink * 0.0003
x_d_new[0, 3, 1] += wink * -0.0003
rotate_roll -= wink * 0.1
rotate_yaw -= wink * 0.1
if 0 < pupil_x:
x_d_new[0, 11, 0] += pupil_x * 0.0007
x_d_new[0, 15, 0] += pupil_x * 0.001
else:
x_d_new[0, 11, 0] += pupil_x * 0.001
x_d_new[0, 15, 0] += pupil_x * 0.0007
x_d_new[0, 11, 1] += pupil_y * -0.001
x_d_new[0, 15, 1] += pupil_y * -0.001
eyes -= pupil_y / 2.
x_d_new[0, 11, 1] += eyes * -0.001
x_d_new[0, 13, 1] += eyes * 0.0003
x_d_new[0, 15, 1] += eyes * -0.001
x_d_new[0, 16, 1] += eyes * 0.0003
x_d_new[0, 1, 1] += eyes * -0.00025
x_d_new[0, 2, 1] += eyes * 0.00025
if 0 < eyebrow:
x_d_new[0, 1, 1] += eyebrow * 0.001
x_d_new[0, 2, 1] += eyebrow * -0.001
else:
x_d_new[0, 1, 0] += eyebrow * -0.001
x_d_new[0, 2, 0] += eyebrow * 0.001
x_d_new[0, 1, 1] += eyebrow * 0.0003
x_d_new[0, 2, 1] += eyebrow * -0.0003
return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])
g_engine = LP_Engine()
class ExpressionSet:
def __init__(self, erst = None, es = None):
if es != None:
self.e = copy.deepcopy(es.e) # [:, :, :]
self.r = copy.deepcopy(es.r) # [:]
self.s = copy.deepcopy(es.s)
self.t = copy.deepcopy(es.t)
elif erst != None:
self.e = erst[0]
self.r = erst[1]
self.s = erst[2]
self.t = erst[3]
else:
self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(get_device())
self.r = torch.Tensor([0, 0, 0])
self.s = 0
self.t = 0
def div(self, value):
self.e /= value
self.r /= value
self.s /= value
self.t /= value
def add(self, other):
self.e += other.e
self.r += other.r
self.s += other.s
self.t += other.t
def sub(self, other):
self.e -= other.e
self.r -= other.r
self.s -= other.s
self.t -= other.t
def mul(self, value):
self.e *= value
self.r *= value
self.s *= value
self.t *= value
#def apply_ratio(self, ratio): self.exp *= ratio
def logging_time(original_fn):
def wrapper_fn(*args, **kwargs):
start_time = time.time()
result = original_fn(*args, **kwargs)
end_time = time.time()
print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
return result
return wrapper_fn
#exp_data_dir = os.path.join(current_directory, "exp_data")
exp_data_dir = os.path.join(folder_paths.output_directory, "exp_data")
if os.path.isdir(exp_data_dir) == False:
os.mkdir(exp_data_dir)
class SaveExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"file_name": ("STRING", {"multiline": False, "default": ""}),
},
"optional": {"save_exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("file_name",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, file_name, save_exp:ExpressionSet=None):
if save_exp == None or file_name == "":
return file_name
with open(os.path.join(exp_data_dir, file_name + ".exp"), "wb") as f:
dill.dump(save_exp, f)
return file_name
class LoadExpData:
@classmethod
def INPUT_TYPES(s):
file_list = [os.path.splitext(file)[0] for file in os.listdir(exp_data_dir) if file.endswith('.exp')]
return {"required": {
"file_name": (sorted(file_list, key=str.lower),),
"ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
},
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, file_name, ratio):
# es = ExpressionSet()
with open(os.path.join(exp_data_dir, file_name + ".exp"), 'rb') as f:
es = dill.load(f)
es.mul(ratio)
return (es,)
class ExpData:
@classmethod
def INPUT_TYPES(s):
return {"required":{
#"code": ("STRING", {"multiline": False, "default": ""}),
"code1": ("INT", {"default": 0}),
"value1": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code2": ("INT", {"default": 0}),
"value2": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code3": ("INT", {"default": 0}),
"value3": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code4": ("INT", {"default": 0}),
"value4": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code5": ("INT", {"default": 0}),
"value5": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
},
"optional":{"add_exp": ("EXP_DATA",),}
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
if add_exp == None:
es = ExpressionSet()
else:
es = ExpressionSet(es = add_exp)
codes = [code1, code2, code3, code4, code5]
values = [value1, value2, value3, value4, value5]
for i in range(5):
idx = int(codes[i] / 10)
r = codes[i] % 10
es.e[0, idx, r] += values[i] * 0.001
return (es,)
class PrintExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"cut_noise": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 0.1}),
},
"optional": {"exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, cut_noise, exp = None):
if exp == None: return (exp,)
cuted_list = []
e = exp.exp * 1000
for idx in range(21):
for r in range(3):
a = abs(e[0, idx, r])
if(cut_noise < a): cuted_list.append((a, e[0, idx, r], idx*10+r))
sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
print(f"sorted_list: {[[item[2], round(float(item[1]),1)] for item in sorted_list]}")
return (exp,)
class Command:
def __init__(self, es, change, keep):
self.es:ExpressionSet = es
self.change = change
self.keep = keep
crop_factor_default = 1.7
crop_factor_min = 1.5
crop_factor_max = 2.5
class AdvancedLivePortrait:
def __init__(self):
self.src_images = None
self.driving_images = None
self.pbar = comfy.utils.ProgressBar(1)
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"retargeting_eyes": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"retargeting_mouth": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
"turn_on": ("BOOLEAN", {"default": True}),
"tracking_src_vid": ("BOOLEAN", {"default": False}),
"animate_without_vid": ("BOOLEAN", {"default": False}),
"command": ("STRING", {"multiline": True, "default": ""}),
},
"optional": {
"src_images": ("IMAGE",),
"motion_link": ("EDITOR_LINK",),
"driving_images": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def parsing_command(self, command, motoin_link):
command.replace(' ', '')
# if command == '': return
lines = command.split('\n')
cmd_list = []
total_length = 0
i = 0
#old_es = None
for line in lines:
i += 1
if line == '': continue
try:
cmds = line.split('=')
idx = int(cmds[0])
if idx == 0: es = ExpressionSet()
else: es = ExpressionSet(es = motoin_link[idx])
cmds = cmds[1].split(':')
change = int(cmds[0])
keep = int(cmds[1])
except:
assert False, f"(AdvancedLivePortrait) Command Err Line {i}: {line}"
return None, None
total_length += change + keep
es.div(change)
cmd_list.append(Command(es, change, keep))
return cmd_list, total_length
def run(self, retargeting_eyes, retargeting_mouth, turn_on, tracking_src_vid, animate_without_vid, command, crop_factor,
src_images=None, driving_images=None, motion_link=None):
if turn_on == False: return (None,None)
src_length = 1
if src_images == None:
if motion_link != None:
self.psi_list = [motion_link[0]]
else: return (None,None)
if src_images != None:
src_length = len(src_images)
if id(src_images) != id(self.src_images) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.src_images = src_images
if 1 < src_length:
self.psi_list = g_engine.prepare_source(src_images, crop_factor, True, tracking_src_vid)
else:
self.psi_list = [g_engine.prepare_source(src_images, crop_factor)]
cmd_list, cmd_length = self.parsing_command(command, motion_link)
if cmd_list == None: return (None,None)
cmd_idx = 0
driving_length = 0
if driving_images is not None:
if id(driving_images) != id(self.driving_images):
self.driving_images = driving_images
self.driving_values = g_engine.prepare_driving_video(driving_images)
driving_length = len(self.driving_values)
total_length = max(driving_length, src_length)
if animate_without_vid:
total_length = max(total_length, cmd_length)
c_i_es = ExpressionSet()
c_o_es = ExpressionSet()
d_0_es = None
out_list = []
psi = None
pipeline = g_engine.get_pipeline()
for i in range(total_length):
if i < src_length:
psi = self.psi_list[i]
s_info = psi.x_s_info
s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))
new_es = ExpressionSet(es = s_es)
if i < cmd_length:
cmd = cmd_list[cmd_idx]
if 0 < cmd.change:
cmd.change -= 1
c_i_es.add(cmd.es)
c_i_es.sub(c_o_es)
elif 0 < cmd.keep:
cmd.keep -= 1
new_es.add(c_i_es)
if cmd.change == 0 and cmd.keep == 0:
cmd_idx += 1
if cmd_idx < len(cmd_list):
c_o_es = ExpressionSet(es = c_i_es)
cmd = cmd_list[cmd_idx]
c_o_es.div(cmd.change)
elif 0 < cmd_length:
new_es.add(c_i_es)
if i < driving_length:
d_i_info = self.driving_values[i]
d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']])#.float().to(device="cuda:0")
if d_0_es is None:
d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))
retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))
new_es.e += d_i_info['exp'] - d_0_es.e
new_es.r += d_i_r - d_0_es.r
new_es.t += d_i_info['t'] - d_0_es.t
r_new = get_rotation_matrix(
s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
d_new = new_es.s * (new_es.e @ r_new) + new_es.t
d_new = pipeline.stitching(psi.x_s_user, d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
np.uint8)
out_list.append(out)
self.pbar.update_absolute(i+1, total_length, ("PNG", Image.fromarray(crop_out), None))
if len(out_list) == 0: return (None,)
out_imgs = torch.cat([pil2tensor(img_rgb) for img_rgb in out_list])
return (out_imgs,)
class ExpressionEditor:
def __init__(self):
self.sample_image = None
self.src_image = None
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
display = "number"
#display = "slider"
return {
"required": {
"rotate_pitch": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_yaw": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_roll": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"blink": ("FLOAT", {"default": 0, "min": -20, "max": 5, "step": 0.5, "display": display}),
"eyebrow": ("FLOAT", {"default": 0, "min": -10, "max": 15, "step": 0.5, "display": display}),
"wink": ("FLOAT", {"default": 0, "min": 0, "max": 25, "step": 0.5, "display": display}),
"pupil_x": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"pupil_y": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"aaa": ("FLOAT", {"default": 0, "min": -30, "max": 120, "step": 1, "display": display}),
"eee": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"woo": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"smile": ("FLOAT", {"default": 0, "min": -0.3, "max": 1.3, "step": 0.01, "display": display}),
"src_ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01, "display": display}),
"sample_ratio": ("FLOAT", {"default": 1, "min": -0.2, "max": 1.2, "step": 0.01, "display": display}),
"sample_parts": (["OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"],),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
},
"optional": {"src_image": ("IMAGE",), "motion_link": ("EDITOR_LINK",),
"sample_image": ("IMAGE",), "add_exp": ("EXP_DATA",),
},
}
RETURN_TYPES = ("IMAGE", "EDITOR_LINK", "EXP_DATA")
RETURN_NAMES = ("image", "motion_link", "save_exp")
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def run(self, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
src_ratio, sample_ratio, sample_parts, crop_factor, src_image=None, sample_image=None, motion_link=None, add_exp=None):
rotate_yaw = -rotate_yaw
new_editor_link = None
if motion_link != None:
self.psi = motion_link[0]
new_editor_link = motion_link.copy()
elif src_image != None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.psi = g_engine.prepare_source(src_image, crop_factor)
self.src_image = src_image
new_editor_link = []
new_editor_link.append(self.psi)
else:
return (None,None)
pipeline = g_engine.get_pipeline()
psi = self.psi
s_info = psi.x_s_info
#delta_new = copy.deepcopy()
s_exp = s_info['exp'] * src_ratio
s_exp[0, 5] = s_info['exp'][0, 5]
s_exp += s_info['kp']
es = ExpressionSet()
if sample_image != None:
if id(self.sample_image) != id(sample_image):
self.sample_image = sample_image
d_image_np = (sample_image * 255).byte().numpy()
d_face = g_engine.crop_face(d_image_np[0], 1.7)
i_d = g_engine.prepare_src_image(d_face)
self.d_info = pipeline.get_kp_info(i_d)
self.d_info['exp'][0, 5, 0] = 0
self.d_info['exp'][0, 5, 1] = 0
# "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
if sample_parts == "OnlyExpression" or sample_parts == "All":
es.e += self.d_info['exp'] * sample_ratio
if sample_parts == "OnlyRotation" or sample_parts == "All":
rotate_pitch += self.d_info['pitch'] * sample_ratio
rotate_yaw += self.d_info['yaw'] * sample_ratio
rotate_roll += self.d_info['roll'] * sample_ratio
elif sample_parts == "OnlyMouth":
retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
elif sample_parts == "OnlyEyes":
retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))
es.r = g_engine.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll)
if add_exp != None:
es.add(add_exp)
new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
s_info['roll'] + es.r[2])
x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']
x_d_new = pipeline.stitching(psi.x_s_user, x_d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)
out_img = pil2tensor(out)
filename = g_engine.get_temp_img_name() #"fe_edit_preview.png"
folder_paths.get_save_image_path(filename, folder_paths.get_temp_directory())
img = Image.fromarray(crop_out)
img.save(os.path.join(folder_paths.get_temp_directory(), filename), compress_level=1)
results = list()
results.append({"filename": filename, "type": "temp"})
new_editor_link.append(es)
return {"ui": {"images": results}, "result": (out_img, new_editor_link, es)}
NODE_CLASS_MAPPINGS = {
"AdvancedLivePortrait": AdvancedLivePortrait,
"ExpressionEditor": ExpressionEditor,
"LoadExpData": LoadExpData,
"SaveExpData": SaveExpData,
"ExpData": ExpData,
"PrintExpData:": PrintExpData,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AdvancedLivePortrait": "Advanced Live Portrait (PHM)",
"ExpressionEditor": "Expression Editor (PHM)",
"LoadExpData": "Load Exp Data (PHM)",
"SaveExpData": "Save Exp Data (PHM)"
}