Spaces:
Running
Running
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT | |
import comfy.model_management as model_management | |
import torch | |
from einops import rearrange | |
class AnimeFace_SemSegPreprocessor: | |
def INPUT_TYPES(s): | |
#This preprocessor is only trained on 512x resolution | |
#https://github.com/siyeong0/Anime-Face-Segmentation/blob/main/predict.py#L25 | |
return define_preprocessor_inputs( | |
remove_background_using_abg=INPUT.BOOLEAN(True), | |
resolution=INPUT.RESOLUTION(default=512, min=512, max=512) | |
) | |
RETURN_TYPES = ("IMAGE", "MASK") | |
RETURN_NAMES = ("IMAGE", "ABG_CHARACTER_MASK (MASK)") | |
FUNCTION = "execute" | |
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" | |
def execute(self, image, remove_background_using_abg=True, resolution=512, **kwargs): | |
from custom_controlnet_aux.anime_face_segment import AnimeFaceSegmentor | |
model = AnimeFaceSegmentor.from_pretrained().to(model_management.get_torch_device()) | |
if remove_background_using_abg: | |
out_image_with_mask = common_annotator_call(model, image, resolution=resolution, remove_background=True) | |
out_image = out_image_with_mask[..., :3] | |
mask = out_image_with_mask[..., 3:] | |
mask = rearrange(mask, "n h w c -> n c h w") | |
else: | |
out_image = common_annotator_call(model, image, resolution=resolution, remove_background=False) | |
N, H, W, C = out_image.shape | |
mask = torch.ones(N, C, H, W) | |
del model | |
return (out_image, mask) | |
NODE_CLASS_MAPPINGS = { | |
"AnimeFace_SemSegPreprocessor": AnimeFace_SemSegPreprocessor | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"AnimeFace_SemSegPreprocessor": "Anime Face Segmentor" | |
} |