Spaces:
Running
Running
import folder_paths | |
import json | |
import os | |
import numpy as np | |
import cv2 | |
from PIL import ImageColor | |
from einops import rearrange | |
import torch | |
import itertools | |
from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses | |
""" | |
Format of POSE_KEYPOINT (AP10K keypoints): | |
[{ | |
"version": "ap10k", | |
"animals": [ | |
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], | |
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], | |
... | |
], | |
"canvas_height": 512, | |
"canvas_width": 768 | |
},...] | |
Format of POSE_KEYPOINT (OpenPose keypoints): | |
[{ | |
"people": [ | |
{ | |
'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]] | |
"face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]], | |
"hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]], | |
"hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]], | |
} | |
], | |
"canvas_height": canvas_height, | |
"canvas_width": canvas_width, | |
},...] | |
""" | |
class SavePoseKpsAsJsonFile: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"pose_kps": ("POSE_KEYPOINT",), | |
"filename_prefix": ("STRING", {"default": "PoseKeypoint"}) | |
} | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_pose_kps" | |
OUTPUT_NODE = True | |
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
self.type = "output" | |
self.prefix_append = "" | |
def save_pose_kps(self, pose_kps, filename_prefix): | |
filename_prefix += self.prefix_append | |
full_output_folder, filename, counter, subfolder, filename_prefix = \ | |
folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]) | |
file = f"{filename}_{counter:05}.json" | |
with open(os.path.join(full_output_folder, file), 'w') as f: | |
json.dump(pose_kps , f) | |
return {} | |
#COCO-Wholebody doesn't have eyebrows as it inherits 68 keypoints format | |
#Perhaps eyebrows can be estimated tho | |
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"] | |
LAPA_COLORS = dict( | |
skin="rgb(0, 153, 255)", | |
left_eye="rgb(0, 204, 153)", | |
right_eye="rgb(255, 153, 0)", | |
nose="rgb(255, 102, 255)", | |
upper_lip="rgb(102, 0, 51)", | |
inner_mouth="rgb(255, 204, 255)", | |
lower_lip="rgb(255, 0, 102)" | |
) | |
#One-based index | |
def kps_idxs(start, end): | |
step = -1 if start > end else 1 | |
return list(range(start-1, end+1-1, step)) | |
#Source: https://www.researchgate.net/profile/Fabrizio-Falchi/publication/338048224/figure/fig1/AS:837860722741255@1576772971540/68-facial-landmarks.jpg | |
FACIAL_PART_RANGES = dict( | |
skin=kps_idxs(1, 17) + kps_idxs(27, 18), | |
nose=kps_idxs(28, 36), | |
left_eye=kps_idxs(37, 42), | |
right_eye=kps_idxs(43, 48), | |
upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61), | |
lower_lip=kps_idxs(61, 68), | |
inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49) | |
) | |
def is_normalized(keypoints) -> bool: | |
point_normalized = [ | |
0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1 | |
for k in keypoints | |
if k is not None | |
] | |
if not point_normalized: | |
return False | |
return np.all(point_normalized) | |
class FacialPartColoringFromPoseKps: | |
def INPUT_TYPES(s): | |
input_types = { | |
"required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})} | |
} | |
for facial_part in FACIAL_PARTS: | |
input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False}) | |
return input_types | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "colorize" | |
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" | |
def colorize(self, pose_kps, mode, **facial_part_colors): | |
pose_frames = pose_kps | |
np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames] | |
np_frames = np.stack(np_frames, axis=0) | |
return (torch.from_numpy(np_frames).float() / 255.,) | |
def draw_kps(self, pose_frame, mode, **facial_part_colors): | |
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"] | |
canvas = np.zeros((height, width, 3), dtype=np.uint8) | |
for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS): | |
n = len(person["face_keypoints_2d"]) // 3 | |
facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2] | |
if is_normalized(facial_kps): | |
facial_kps *= (width, height) | |
facial_kps = facial_kps.astype(np.int32) | |
part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3] | |
part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :] | |
if mode == "point": | |
for pt in part_contours: | |
cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1) | |
else: | |
cv2.fillPoly(canvas, pts=[part_contours], color=part_color) | |
return canvas | |
# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/keypoints_pose_18.png | |
BODY_PART_INDEXES = { | |
"Head": (16, 14, 0, 15, 17), | |
"Neck": (0, 1), | |
"Shoulder": (2, 5), | |
"Torso": (2, 5, 8, 11), | |
"RArm": (2, 3), | |
"RForearm": (3, 4), | |
"LArm": (5, 6), | |
"LForearm": (6, 7), | |
"RThigh": (8, 9), | |
"RLeg": (9, 10), | |
"LThigh": (11, 12), | |
"LLeg": (12, 13) | |
} | |
BODY_PART_DEFAULT_W_H = { | |
"Head": "256, 256", | |
"Neck": "100, 100", | |
"Shoulder": '', | |
"Torso": "350, 450", | |
"RArm": "128, 256", | |
"RForearm": "128, 256", | |
"LArm": "128, 256", | |
"LForearm": "128, 256", | |
"RThigh": "128, 256", | |
"RLeg": "128, 256", | |
"LThigh": "128, 256", | |
"LLeg": "128, 256" | |
} | |
class SinglePersonProcess: | |
def sort_and_get_max_people(s, pose_kps): | |
for idx in range(len(pose_kps)): | |
pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0]) | |
return pose_kps, max(len(frame["people"]) for frame in pose_kps) | |
def __init__(self, pose_kps, person_idx=0) -> None: | |
self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"] | |
self.poses = [ | |
self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"]) | |
if person_idx < len(pose_frame["people"]) | |
else None | |
for pose_frame in pose_kps | |
] | |
def normalize(self, pose_kps_2d): | |
n = len(pose_kps_2d) // 3 | |
pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3) | |
pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 #Safe large value | |
pose_kps_2d = pose_kps_2d[:, :2] | |
if is_normalized(pose_kps_2d): | |
pose_kps_2d *= (self.width, self.height) | |
return pose_kps_2d | |
def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)): | |
width, height = bbox_size | |
xyxy_bboxes = {} | |
for idx, pose in enumerate(self.poses): | |
if pose is None: | |
xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4 | |
continue | |
pts = pose[BODY_PART_INDEXES[part_name], :] | |
#top_left = np.min(pts[:,0]), np.min(pts[:,1]) | |
#bottom_right = np.max(pts[:,0]), np.max(pts[:,1]) | |
#pad_width = np.maximum(width - (bottom_right[0]-top_left[0]), 0) / 2 | |
#pad_height = np.maximum(height - (bottom_right[1]-top_left[1]), 0) / 2 | |
#xyxy_bboxes.append(( | |
# top_left[0] - pad_width, top_left[1] - pad_height, | |
# bottom_right[0] + pad_width, bottom_right[1] + pad_height, | |
#)) | |
x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1]) | |
xyxy_bboxes[idx] = ( | |
x_mid - width/2, y_mid - height/2, | |
x_mid + width/2, y_mid + height/2 | |
) | |
return xyxy_bboxes | |
class UpperBodyTrackingFromPoseKps: | |
PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"] | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"pose_kps": ("POSE_KEYPOINT",), | |
"id_include": ("STRING", {"default": '', "multiline": False}), | |
**{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES} | |
} | |
} | |
RETURN_TYPES = ("TRACKING", "STRING") | |
RETURN_NAMES = ("tracking", "prompt") | |
FUNCTION = "convert" | |
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" | |
def convert(self, pose_kps, id_include, **parts_width_height): | |
parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()} | |
enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())] | |
tracked = {part_name: {} for part_name in enabled_part_names} | |
id_include = id_include.strip() | |
id_include = list(map(int, id_include.split(','))) if len(id_include) else [] | |
prompt_string = '' | |
pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps) | |
for person_idx in range(max_people): | |
if len(id_include) and person_idx not in id_include: | |
continue | |
processor = SinglePersonProcess(pose_kps, person_idx) | |
for part_name in enabled_part_names: | |
bbox_size = tuple(map(int, parts_width_height[part_name].split(','))) | |
part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size) | |
id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()} | |
tracked[part_name][person_idx] = id_coordinates | |
for class_name, class_data in tracked.items(): | |
for class_id in class_data.keys(): | |
class_id_str = str(class_id) | |
# Use the incoming prompt for each class name and ID | |
_class_name = class_name.replace('L', '').replace('R', '').lower() | |
prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n' | |
return (tracked, prompt_string) | |
def numpy2torch(np_image: np.ndarray) -> torch.Tensor: | |
""" [H, W, C] => [B=1, H, W, C]""" | |
return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0) | |
class RenderPeopleKps: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"kps": ("POSE_KEYPOINT",), | |
"render_body": ("BOOLEAN", {"default": True}), | |
"render_hand": ("BOOLEAN", {"default": True}), | |
"render_face": ("BOOLEAN", {"default": True}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "render" | |
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" | |
def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]: | |
if isinstance(kps, list): | |
kps = kps[0] | |
poses, _, height, width = decode_json_as_poses(kps) | |
np_image = draw_poses( | |
poses, | |
height, | |
width, | |
render_body, | |
render_hand, | |
render_face, | |
) | |
return (numpy2torch(np_image),) | |
class RenderAnimalKps: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"kps": ("POSE_KEYPOINT",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "render" | |
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" | |
def render(self, kps) -> tuple[np.ndarray]: | |
if isinstance(kps, list): | |
kps = kps[0] | |
_, poses, height, width = decode_json_as_poses(kps) | |
np_image = draw_animalposes(poses, height, width) | |
return (numpy2torch(np_image),) | |
NODE_CLASS_MAPPINGS = { | |
"SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile, | |
"FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps, | |
"UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps, | |
"RenderPeopleKps": RenderPeopleKps, | |
"RenderAnimalKps": RenderAnimalKps, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"SavePoseKpsAsJsonFile": "Save Pose Keypoints", | |
"FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS", | |
"UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)", | |
"RenderPeopleKps": "Render Pose JSON (Human)", | |
"RenderAnimalKps": "Render Pose JSON (Animal)", | |
} | |