gartajackhats1985's picture
Upload 171 files
c37b2dd verified
import os
import sys
import comfy.samplers
import comfy.sd
import warnings
from segment_anything import sam_model_registry
from io import BytesIO
import piexif
import zipfile
import re
import impact.wildcards
from impact.utils import *
import impact.core as core
from impact.core import SEG
from impact.config import latent_letter_path
from nodes import MAX_RESOLUTION
from PIL import Image, ImageOps
import numpy as np
import hashlib
import json
import safetensors.torch
from PIL.PngImagePlugin import PngInfo
import comfy.model_management
import base64
import impact.wildcards as wildcards
from . import hooks
from . import utils
try:
from comfy_extras import nodes_differential_diffusion
except Exception:
print(f"\n#############################################\n[Impact Pack] ComfyUI is an outdated version.\n#############################################\n")
raise Exception("[Impact Pack] ComfyUI is an outdated version.")
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
model_path = folder_paths.models_dir
# folder_paths.supported_pt_extensions
add_folder_path_and_extensions("mmdets_bbox", [os.path.join(model_path, "mmdets", "bbox")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("mmdets_segm", [os.path.join(model_path, "mmdets", "segm")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("mmdets", [os.path.join(model_path, "mmdets")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("sams", [os.path.join(model_path, "sams")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("onnx", [os.path.join(model_path, "onnx")], {'.onnx'})
# Nodes
class ONNXDetectorProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model_name": (folder_paths.get_filename_list("onnx"), )}}
RETURN_TYPES = ("BBOX_DETECTOR", )
FUNCTION = "load_onnx"
CATEGORY = "ImpactPack"
def load_onnx(self, model_name):
model = folder_paths.get_full_path("onnx", model_name)
return (core.ONNXDetector(model), )
class CLIPSegDetectorProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING", {"multiline": False, "tooltip": "Enter the targets to be detected, separated by commas"}),
"blur": ("FLOAT", {"min": 0, "max": 15, "step": 0.1, "default": 7, "tooltip": "Blurs the detected mask"}),
"threshold": ("FLOAT", {"min": 0, "max": 1, "step": 0.05, "default": 0.4, "tooltip": "Detects only areas that are certain above the threshold."}),
"dilation_factor": ("INT", {"min": 0, "max": 10, "step": 1, "default": 4, "tooltip": "Dilates the detected mask."}),
}
}
RETURN_TYPES = ("BBOX_DETECTOR", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
DESCRIPTION = "Provides a detection function using CLIPSeg, which generates masks based on text prompts.\nTo use this node, the CLIPSeg custom node must be installed."
def doit(self, text, blur, threshold, dilation_factor):
if "CLIPSeg" in nodes.NODE_CLASS_MAPPINGS:
return (core.BBoxDetectorBasedOnCLIPSeg(text, blur, threshold, dilation_factor), )
else:
print("[ERROR] CLIPSegToBboxDetector: CLIPSeg custom node isn't installed. You must install biegert/ComfyUI-CLIPSeg extension to use this node.")
class SAMLoader:
@classmethod
def INPUT_TYPES(cls):
models = [x for x in folder_paths.get_filename_list("sams") if 'hq' not in x]
return {
"required": {
"model_name": (models + ['ESAM'], {"tooltip": "The detection accuracy varies depending on the SAM model. ESAM can only be used if ComfyUI-YoloWorld-EfficientSAM is installed."}),
"device_mode": (["AUTO", "Prefer GPU", "CPU"], {"tooltip": "AUTO: Only applicable when a GPU is available. It temporarily loads the SAM_MODEL into VRAM only when the detection function is used.\n"
"Prefer GPU: Tries to keep the SAM_MODEL on the GPU whenever possible. This can be used when there is sufficient VRAM available.\n"
"CPU: Always loads only on the CPU."}),
}
}
RETURN_TYPES = ("SAM_MODEL", )
FUNCTION = "load_model"
CATEGORY = "ImpactPack"
DESCRIPTION = "Load the SAM (Segment Anything) model. This can be used in places that utilize SAM detection functionality, such as SAMDetector or SimpleDetector.\nThe SAM detection functionality in Impact Pack must use the SAM_MODEL loaded through this node."
def load_model(self, model_name, device_mode="auto"):
if model_name == 'ESAM':
if 'ESAM_ModelLoader_Zho' not in nodes.NODE_CLASS_MAPPINGS:
try_install_custom_node('https://github.com/ZHO-ZHO-ZHO/ComfyUI-YoloWorld-EfficientSAM',
"To use 'ESAM' model, 'ComfyUI-YoloWorld-EfficientSAM' extension is required.")
raise Exception("'ComfyUI-YoloWorld-EfficientSAM' node isn't installed.")
esam_loader = nodes.NODE_CLASS_MAPPINGS['ESAM_ModelLoader_Zho']()
if device_mode == 'CPU':
esam = esam_loader.load_esam_model('CPU')[0]
else:
device_mode = 'CUDA'
esam = esam_loader.load_esam_model('CUDA')[0]
sam_obj = core.ESAMWrapper(esam, device_mode)
esam.sam_wrapper = sam_obj
print(f"Loads EfficientSAM model: (device:{device_mode})")
return (esam, )
modelname = folder_paths.get_full_path("sams", model_name)
if 'vit_h' in model_name:
model_kind = 'vit_h'
elif 'vit_l' in model_name:
model_kind = 'vit_l'
else:
model_kind = 'vit_b'
sam = sam_model_registry[model_kind](checkpoint=modelname)
size = os.path.getsize(modelname)
safe_to = core.SafeToGPU(size)
# Unless user explicitly wants to use CPU, we use GPU
device = comfy.model_management.get_torch_device() if device_mode == "Prefer GPU" else "CPU"
if device_mode == "Prefer GPU":
safe_to.to_device(sam, device)
is_auto_mode = device_mode == "AUTO"
sam_obj = core.SAMWrapper(sam, is_auto_mode=is_auto_mode, safe_to_gpu=safe_to)
sam.sam_wrapper = sam_obj
print(f"Loads SAM model: {modelname} (device:{device_mode})")
return (sam, )
class ONNXDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"onnx_detector": ("ONNX_DETECTOR",),
"image": ("IMAGE",),
"threshold": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
}
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
OUTPUT_NODE = True
def doit(self, onnx_detector, image, threshold, dilation, crop_factor, drop_size):
segs = onnx_detector.detect(image, threshold, dilation, crop_factor, drop_size)
return (segs, )
class DetailerForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"segs": ("SEGS", ),
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (core.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"detailer_hook": ("DETAILER_HOOK",),
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("IMAGE", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
@staticmethod
def do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard_opt=None, detailer_hook=None,
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None,
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
image = image.clone()
enhanced_alpha_list = []
enhanced_list = []
cropped_list = []
cnet_pil_list = []
segs = core.segs_scale_match(segs, image.shape)
new_segs = []
wildcard_concat_mode = None
if wildcard_opt is not None:
if wildcard_opt.startswith('[CONCAT]'):
wildcard_concat_mode = 'concat'
wildcard_opt = wildcard_opt[8:]
wmode, wildcard_chooser = wildcards.process_wildcard_for_segs(wildcard_opt)
else:
wmode, wildcard_chooser = None, None
if wmode in ['ASC', 'DSC', 'ASC-SIZE', 'DSC-SIZE']:
if wmode == 'ASC':
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1]))
elif wmode == 'DSC':
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1]), reverse=True)
elif wmode == 'ASC-SIZE':
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[2]-x.bbox[0]) * (x.bbox[3]-x.bbox[1]))
else: # wmode == 'DSC-SIZE'
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[2]-x.bbox[0]) * (x.bbox[3]-x.bbox[1]), reverse=True)
else:
ordered_segs = segs[1]
if noise_mask_feather > 0 and 'denoise_mask_function' not in model.model_options:
model = nodes_differential_diffusion.DifferentialDiffusion().apply(model)[0]
for i, seg in enumerate(ordered_segs):
cropped_image = crop_ndarray4(image.cpu().numpy(), seg.crop_region) # Never use seg.cropped_image to handle overlapping area
cropped_image = to_tensor(cropped_image)
mask = to_tensor(seg.cropped_mask)
mask = tensor_gaussian_blur_mask(mask, feather)
is_mask_all_zeros = (seg.cropped_mask == 0).all().item()
if is_mask_all_zeros:
print(f"Detailer: segment skip [empty mask]")
continue
if noise_mask:
cropped_mask = seg.cropped_mask
else:
cropped_mask = None
if wildcard_chooser is not None and wmode != "LAB":
seg_seed, wildcard_item = wildcard_chooser.get(seg)
elif wildcard_chooser is not None and wmode == "LAB":
seg_seed, wildcard_item = None, wildcard_chooser.get(seg)
else:
seg_seed, wildcard_item = None, None
seg_seed = seed + i if seg_seed is None else seg_seed
cropped_positive = [
[condition, {
k: core.crop_condition_mask(v, image, seg.crop_region) if k == "mask" else v
for k, v in details.items()
}]
for condition, details in positive
]
if not isinstance(negative, str):
cropped_negative = [
[condition, {
k: core.crop_condition_mask(v, image, seg.crop_region) if k == "mask" else v
for k, v in details.items()
}]
for condition, details in negative
]
else:
# Negative Conditioning is placeholder such as FLUX.1
cropped_negative = negative
if wildcard_item and wildcard_item.strip() == '[SKIP]':
continue
if wildcard_item and wildcard_item.strip() == '[STOP]':
break
orig_cropped_image = cropped_image.clone()
enhanced_image, cnet_pils = core.enhance_detail(cropped_image, model, clip, vae, guide_size, guide_size_for_bbox, max_size,
seg.bbox, seg_seed, steps, cfg, sampler_name, scheduler,
cropped_positive, cropped_negative, denoise, cropped_mask, force_inpaint,
wildcard_opt=wildcard_item, wildcard_opt_concat_mode=wildcard_concat_mode,
detailer_hook=detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative, control_net_wrapper=seg.control_net_wrapper,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather,
scheduler_func=scheduler_func_opt)
if cnet_pils is not None:
cnet_pil_list.extend(cnet_pils)
if not (enhanced_image is None):
# don't latent composite-> converting to latent caused poor quality
# use image paste
image = image.cpu()
enhanced_image = enhanced_image.cpu()
tensor_paste(image, enhanced_image, (seg.crop_region[0], seg.crop_region[1]), mask) # this code affecting to `cropped_image`.
enhanced_list.append(enhanced_image)
if detailer_hook is not None:
image = detailer_hook.post_paste(image)
if not (enhanced_image is None):
# Convert enhanced_pil_alpha to RGBA mode
enhanced_image_alpha = tensor_convert_rgba(enhanced_image)
new_seg_image = enhanced_image.numpy() # alpha should not be applied to seg_image
# Apply the mask
mask = tensor_resize(mask, *tensor_get_size(enhanced_image))
tensor_putalpha(enhanced_image_alpha, mask)
enhanced_alpha_list.append(enhanced_image_alpha)
else:
new_seg_image = None
cropped_list.append(orig_cropped_image) # NOTE: Don't use `cropped_image`
new_seg = SEG(new_seg_image, seg.cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper)
new_segs.append(new_seg)
image_tensor = tensor_convert_rgb(image)
cropped_list.sort(key=lambda x: x.shape, reverse=True)
enhanced_list.sort(key=lambda x: x.shape, reverse=True)
enhanced_alpha_list.sort(key=lambda x: x.shape, reverse=True)
return image_tensor, cropped_list, enhanced_list, enhanced_alpha_list, cnet_pil_list, (segs[0], new_segs)
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, cycle=1,
detailer_hook=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
enhanced_img, *_ = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
return (enhanced_img, )
class DetailerForEachPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"segs": ("SEGS", ),
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (core.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"basic_pipe": ("BASIC_PIPE", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"detailer_hook": ("DETAILER_HOOK",),
"refiner_basic_pipe_opt": ("BASIC_PIPE",),
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE")
RETURN_NAMES = ("image", "segs", "basic_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard,
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None,
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
# set fallback image
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, new_segs, basic_pipe, cnet_pil_list
class FaceDetailer:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (core.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],),
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"bbox_detector": ("BBOX_DETECTOR", ),
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR", ),
"detailer_hook": ("DETAILER_HOOK",),
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Simple"
@staticmethod
def enhance_face(image, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size,
bbox_detector, segm_detector=None, sam_model_opt=None, wildcard_opt=None, detailer_hook=None,
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, cycle=1,
inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
# make default prompt as 'face' if empty prompt for CLIPSeg
bbox_detector.setAux('face')
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size, detailer_hook=detailer_hook)
bbox_detector.setAux(None)
# bbox + sam combination
if sam_model_opt is not None:
sam_mask = core.make_sam_mask(sam_model_opt, segs, image, sam_detection_hint, sam_dilation,
sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, )
segs = core.segs_bitwise_and_mask(segs, sam_mask)
elif segm_detector is not None:
segm_segs = segm_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size)
if (hasattr(segm_detector, 'override_bbox_by_segm') and segm_detector.override_bbox_by_segm and
not (detailer_hook is not None and not hasattr(detailer_hook, 'override_bbox_by_segm'))):
segs = segm_segs
else:
segm_mask = core.segs_to_combined_mask(segm_segs)
segs = core.segs_bitwise_and_mask(segs, segm_mask)
if len(segs[1]) > 0:
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard_opt, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
else:
enhanced_img = image
cropped_enhanced = []
cropped_enhanced_alpha = []
cnet_pil_list = []
# Mask Generator
mask = core.segs_to_combined_mask(segs)
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list
def doit(self, image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, wildcard, cycle=1,
sam_model_opt=None, segm_detector_opt=None, detailer_hook=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
result_img = None
result_mask = None
result_cropped_enhanced = []
result_cropped_enhanced_alpha = []
result_cnet_images = []
if len(image) > 1:
print(f"[Impact Pack] WARN: FaceDetailer is not a node designed for video detailing. If you intend to perform video detailing, please use Detailer For AnimateDiff.")
for i, single_image in enumerate(image):
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector_opt, sam_model_opt, wildcard, detailer_hook,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask
result_cropped_enhanced.extend(cropped_enhanced)
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha)
result_cnet_images.extend(cnet_pil_list)
pipe = (model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, None, None, None, None)
return result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, pipe, result_cnet_images
class LatentPixelScale:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"scale_method": (s.upscale_methods,),
"scale_factor": ("FLOAT", {"default": 1.5, "min": 0.1, "max": 10000, "step": 0.1}),
"vae": ("VAE", ),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
}
}
RETURN_TYPES = ("LATENT", "IMAGE")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, samples, scale_method, scale_factor, vae, use_tiled_vae, upscale_model_opt=None):
if upscale_model_opt is None:
latimg = core.latent_upscale_on_pixel_space2(samples, scale_method, scale_factor, vae, use_tile=use_tiled_vae)
else:
latimg = core.latent_upscale_on_pixel_space_with_model2(samples, scale_method, upscale_model_opt, scale_factor, vae, use_tile=use_tiled_vae)
return latimg
class NoiseInjectionDetailerHookProvider:
schedules = ["skip_start", "from_start"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_cycle": (s.schedules,),
"source": (["CPU", "GPU"],),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"start_strength": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 200.0, "step": 0.01}),
"end_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
},
}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, schedule_for_cycle, source, seed, start_strength, end_strength):
try:
hook = hooks.InjectNoiseHookForDetailer(source, seed, start_strength, end_strength,
from_start=('from_start' in schedule_for_cycle))
return (hook, )
except Exception as e:
print("[ERROR] NoiseInjectionDetailerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
# class CustomNoiseDetailerHookProvider:
# @classmethod
# def INPUT_TYPES(s):
# return {"required": {
# "noise": ("NOISE",)},
# }
#
# RETURN_TYPES = ("DETAILER_HOOK",)
# FUNCTION = "doit"
#
# CATEGORY = "ImpactPack/Detailer"
#
# def doit(self, noise):
# hook = hooks.CustomNoiseDetailerHookProvider(noise)
# return (hook, )
class VariationNoiseDetailerHookProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01})}
}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, seed, strength):
hook = hooks.VariationNoiseDetailerHookProvider(seed, strength)
return (hook, )
class UnsamplerDetailerHookProvider:
schedules = ["skip_start", "from_start"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}),
"start_end_at_step": ("INT", {"default": 21, "min": 0, "max": 10000}),
"end_end_at_step": ("INT", {"default": 24, "min": 0, "max": 10000}),
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"normalize": (["disable", "enable"], ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"schedule_for_cycle": (s.schedules,),
}}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
scheduler, normalize, positive, negative, schedule_for_cycle):
try:
hook = hooks.UnsamplerDetailerHook(model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
scheduler, normalize, positive, negative,
from_start=('from_start' in schedule_for_cycle))
return (hook, )
except Exception as e:
print("[ERROR] UnsamplerDetailerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
class DenoiseSchedulerDetailerHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_cycle": (s.schedules,),
"target_denoise": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, schedule_for_cycle, target_denoise):
hook = hooks.SimpleDetailerDenoiseSchedulerHook(target_denoise)
return (hook, )
class CoreMLDetailerHookProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {"mode": (["512x512", "768x768", "512x768", "768x512"], )}, }
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, mode):
hook = hooks.CoreMLHook(mode)
return (hook, )
class CfgScheduleHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"target_cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, target_cfg):
hook = None
if schedule_for_iteration == "simple":
hook = hooks.SimpleCfgScheduleHook(target_cfg)
return (hook, )
class UnsamplerHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}),
"start_end_at_step": ("INT", {"default": 21, "min": 0, "max": 10000}),
"end_end_at_step": ("INT", {"default": 24, "min": 0, "max": 10000}),
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"normalize": (["disable", "enable"], ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"schedule_for_iteration": (s.schedules,),
}}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
scheduler, normalize, positive, negative, schedule_for_iteration):
try:
hook = None
if schedule_for_iteration == "simple":
hook = hooks.UnsamplerHook(model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
scheduler, normalize, positive, negative)
return (hook, )
except Exception as e:
print("[ERROR] UnsamplerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
class NoiseInjectionHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"source": (["CPU", "GPU"],),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"start_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
"end_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, source, seed, start_strength, end_strength):
try:
hook = None
if schedule_for_iteration == "simple":
hook = hooks.InjectNoiseHook(source, seed, start_strength, end_strength)
return (hook, )
except Exception as e:
print("[ERROR] NoiseInjectionHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.")
print(f"\t{e}")
pass
class DenoiseScheduleHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"target_denoise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, target_denoise):
hook = None
if schedule_for_iteration == "simple":
hook = hooks.SimpleDenoiseScheduleHook(target_denoise)
return (hook, )
class StepsScheduleHookProvider:
schedules = ["simple"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"schedule_for_iteration": (s.schedules,),
"target_steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, schedule_for_iteration, target_steps):
hook = None
if schedule_for_iteration == "simple":
hook = hooks.SimpleStepsScheduleHook(target_steps)
return (hook, )
class DetailerHookCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"hook1": ("DETAILER_HOOK",),
"hook2": ("DETAILER_HOOK",),
},
}
RETURN_TYPES = ("DETAILER_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, hook1, hook2):
hook = hooks.DetailerHookCombine(hook1, hook2)
return (hook, )
class PixelKSampleHookCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"hook1": ("PK_HOOK",),
"hook2": ("PK_HOOK",),
},
}
RETURN_TYPES = ("PK_HOOK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, hook1, hook2):
hook = hooks.PixelKSampleHookCombine(hook1, hook2)
return (hook, )
class PixelTiledKSampleUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"model": ("MODEL",),
"vae": ("VAE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "padded", 'simple'], ),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
"tile_cnet_opt": ("CONTROL_NET", ),
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy, upscale_model_opt=None,
pk_hook_opt=None, tile_cnet_opt=None, tile_cnet_strength=1.0):
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS:
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_cnet_opt,
tile_size=max(tile_width, tile_height), tile_cnet_strength=tile_cnet_strength)
return (upscaler, )
else:
utils.try_install_custom_node('https://github.com/BlenderNeko/ComfyUI_TiledKSampler',
"To use 'PixelTiledKSampleUpscalerProvider' node, 'BlenderNeko/ComfyUI_TiledKSampler' extension is required.")
raise Exception("[ERROR] PixelTiledKSampleUpscalerProvider: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.")
class PixelTiledKSampleUpscalerProviderPipe:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "padded", 'simple'], ),
"basic_pipe": ("BASIC_PIPE",)
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
"tile_cnet_opt": ("CONTROL_NET", ),
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise, tile_width, tile_height, tiling_strategy, basic_pipe, upscale_model_opt=None, pk_hook_opt=None,
tile_cnet_opt=None, tile_cnet_strength=1.0):
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS:
model, _, vae, positive, negative = basic_pipe
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_cnet_opt,
tile_size=max(tile_width, tile_height), tile_cnet_strength=tile_cnet_strength)
return (upscaler, )
else:
print("[ERROR] PixelTiledKSampleUpscalerProviderPipe: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.")
class PixelKSampleUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"model": ("MODEL",),
"vae": ("VAE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (core.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
use_tiled_vae, upscale_model_opt=None, pk_hook_opt=None, tile_size=512, scheduler_func_opt=None):
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt,
tile_size=tile_size, scheduler_func=scheduler_func_opt)
return (upscaler, )
class PixelKSampleUpscalerProviderPipe(PixelKSampleUpscalerProvider):
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (core.SCHEDULERS, ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"basic_pipe": ("BASIC_PIPE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_opt": ("PK_HOOK", ),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
"tile_cnet_opt": ("CONTROL_NET", ),
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("UPSCALER",)
FUNCTION = "doit_pipe"
CATEGORY = "ImpactPack/Upscale"
def doit_pipe(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise,
use_tiled_vae, basic_pipe, upscale_model_opt=None, pk_hook_opt=None,
tile_size=512, scheduler_func_opt=None, tile_cnet_opt=None, tile_cnet_strength=1.0):
model, _, vae, positive, negative = basic_pipe
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt,
tile_size=tile_size, scheduler_func=scheduler_func_opt,
tile_cnet_opt=tile_cnet_opt, tile_cnet_strength=tile_cnet_strength)
return (upscaler, )
class TwoSamplersForMaskUpscalerProvider:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"full_sample_schedule": (
["none", "interleave1", "interleave2", "interleave3",
"last1", "last2",
"interleave1+last1", "interleave2+last1", "interleave3+last1",
],),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"base_sampler": ("KSAMPLER", ),
"mask_sampler": ("KSAMPLER", ),
"mask": ("MASK", ),
"vae": ("VAE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"full_sampler_opt": ("KSAMPLER",),
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_base_opt": ("PK_HOOK", ),
"pk_hook_mask_opt": ("PK_HOOK", ),
"pk_hook_full_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae,
full_sampler_opt=None, upscale_model_opt=None,
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512):
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae,
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt,
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size)
return (upscaler, )
class TwoSamplersForMaskUpscalerProviderPipe:
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scale_method": (s.upscale_methods,),
"full_sample_schedule": (
["none", "interleave1", "interleave2", "interleave3",
"last1", "last2",
"interleave1+last1", "interleave2+last1", "interleave3+last1",
],),
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"base_sampler": ("KSAMPLER", ),
"mask_sampler": ("KSAMPLER", ),
"mask": ("MASK", ),
"basic_pipe": ("BASIC_PIPE",),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}),
},
"optional": {
"full_sampler_opt": ("KSAMPLER",),
"upscale_model_opt": ("UPSCALE_MODEL", ),
"pk_hook_base_opt": ("PK_HOOK", ),
"pk_hook_mask_opt": ("PK_HOOK", ),
"pk_hook_full_opt": ("PK_HOOK", ),
}
}
RETURN_TYPES = ("UPSCALER", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, basic_pipe,
full_sampler_opt=None, upscale_model_opt=None,
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512):
mask = make_2d_mask(mask)
_, _, vae, _, _ = basic_pipe
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae,
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt,
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size)
return (upscaler, )
class IterativeLatentUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}),
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}),
"temp_prefix": ("STRING", {"default": ""}),
"upscaler": ("UPSCALER",),
"step_mode": (["simple", "geometric"], {"default": "simple"})
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ("LATENT", "VAE")
RETURN_NAMES = ("latent", "vae")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, samples, upscale_factor, steps, temp_prefix, upscaler, step_mode="simple", unique_id=None):
w = samples['samples'].shape[3]*8 # image width
h = samples['samples'].shape[2]*8 # image height
if temp_prefix == "":
temp_prefix = None
if step_mode == "geometric":
upscale_factor_unit = pow(upscale_factor, 1.0/steps)
else: # simple
upscale_factor_unit = max(0, (upscale_factor - 1.0) / steps)
current_latent = samples
noise_mask = current_latent.get('noise_mask')
scale = 1
for i in range(steps-1):
if step_mode == "geometric":
scale *= upscale_factor_unit
else: # simple
scale += upscale_factor_unit
new_w = w*scale
new_h = h*scale
core.update_node_status(unique_id, f"{i+1}/{steps} steps | x{scale:.2f}", (i+1)/steps)
print(f"IterativeLatentUpscale[{i+1}/{steps}]: {new_w:.1f}x{new_h:.1f} (scale:{scale:.2f}) ")
step_info = i, steps
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix)
if noise_mask is not None:
current_latent['noise_mask'] = noise_mask
if scale < upscale_factor:
new_w = w*upscale_factor
new_h = h*upscale_factor
core.update_node_status(unique_id, f"Final step | x{upscale_factor:.2f}", 1.0)
print(f"IterativeLatentUpscale[Final]: {new_w:.1f}x{new_h:.1f} (scale:{upscale_factor:.2f}) ")
step_info = steps-1, steps
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix)
core.update_node_status(unique_id, "", None)
return current_latent, upscaler.vae
class IterativeImageUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pixels": ("IMAGE", ),
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}),
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}),
"temp_prefix": ("STRING", {"default": ""}),
"upscaler": ("UPSCALER",),
"vae": ("VAE",),
"step_mode": (["simple", "geometric"], {"default": "simple"})
},
"hidden": {"unique_id": "UNIQUE_ID"}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Upscale"
def doit(self, pixels, upscale_factor, steps, temp_prefix, upscaler, vae, step_mode="simple", unique_id=None):
if temp_prefix == "":
temp_prefix = None
core.update_node_status(unique_id, "VAEEncode (first)", 0)
if upscaler.is_tiled:
latent = nodes.VAEEncodeTiled().encode(vae, pixels, upscaler.tile_size)[0]
else:
latent = nodes.VAEEncode().encode(vae, pixels)[0]
refined_latent = IterativeLatentUpscale().doit(latent, upscale_factor, steps, temp_prefix, upscaler, step_mode, unique_id)
core.update_node_status(unique_id, "VAEDecode (final)", 1.0)
if upscaler.is_tiled:
pixels = nodes.VAEDecodeTiled().decode(vae, refined_latent[0], upscaler.tile_size)[0]
else:
pixels = nodes.VAEDecode().decode(vae, refined_latent[0])[0]
core.update_node_status(unique_id, "", None)
return (pixels, )
class FaceDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"detailer_pipe": ("DETAILER_PIPE",),
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (core.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],),
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Simple"
def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion,
sam_mask_hint_threshold, sam_mask_hint_use_negative, drop_size, refiner_ratio=None,
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
result_img = None
result_mask = None
result_cropped_enhanced = []
result_cropped_enhanced_alpha = []
result_cnet_images = []
if len(image) > 1:
print(f"[Impact Pack] WARN: FaceDetailer is not a node designed for video detailing. If you intend to perform video detailing, please use Detailer For AnimateDiff.")
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector, sam_model_opt, detailer_hook, \
refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe
for i, single_image in enumerate(image):
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector, sam_model_opt, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask
result_cropped_enhanced.extend(cropped_enhanced)
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha)
result_cnet_images.extend(cnet_pil_list)
if len(result_cropped_enhanced) == 0:
result_cropped_enhanced = [empty_pil_tensor()]
if len(result_cropped_enhanced_alpha) == 0:
result_cropped_enhanced_alpha = [empty_pil_tensor()]
if len(result_cnet_images) == 0:
result_cnet_images = [empty_pil_tensor()]
return result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, detailer_pipe, result_cnet_images
class MaskDetailerPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"mask": ("MASK", ),
"basic_pipe": ("BASIC_PIPE",),
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "mask bbox", "label_off": "crop region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"mask_mode": ("BOOLEAN", {"default": True, "label_on": "masked only", "label_off": "whole"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (core.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 100}),
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
},
"optional": {
"refiner_basic_pipe_opt": ("BASIC_PIPE", ),
"detailer_hook": ("DETAILER_HOOK",),
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
"bbox_fill": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"contour_fill": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "BASIC_PIPE", "BASIC_PIPE")
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "basic_pipe", "refiner_basic_pipe_opt")
OUTPUT_IS_LIST = (False, True, True, False, False)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, mask, basic_pipe, guide_size, guide_size_for, max_size, mask_mode,
seed, steps, cfg, sampler_name, scheduler, denoise,
feather, crop_factor, drop_size, refiner_ratio, batch_size, cycle=1,
refiner_basic_pipe_opt=None, detailer_hook=None, inpaint_model=False, noise_mask_feather=0,
bbox_fill=False, contour_fill=True, scheduler_func_opt=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: MaskDetailer does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
# create segs
if mask is not None:
mask = make_2d_mask(mask)
segs = core.mask_to_segs(mask, False, crop_factor, bbox_fill, drop_size, is_contour=contour_fill)
else:
segs = ((image.shape[1], image.shape[2]), [])
enhanced_img_batch = None
cropped_enhanced_list = []
cropped_enhanced_alpha_list = []
for i in range(batch_size):
if mask is not None:
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, _, _ = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed+i, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, mask_mode,
force_inpaint=True, wildcard_opt=None, detailer_hook=detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model, refiner_clip=refiner_clip,
refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
else:
enhanced_img, cropped_enhanced, cropped_enhanced_alpha = image, [], []
if enhanced_img_batch is None:
enhanced_img_batch = enhanced_img
else:
enhanced_img_batch = torch.cat((enhanced_img_batch, enhanced_img), dim=0)
cropped_enhanced_list += cropped_enhanced
cropped_enhanced_alpha_list += cropped_enhanced_alpha
# set fallback image
if len(cropped_enhanced_list) == 0:
cropped_enhanced_list = [empty_pil_tensor()]
if len(cropped_enhanced_alpha_list) == 0:
cropped_enhanced_alpha_list = [empty_pil_tensor()]
return enhanced_img_batch, cropped_enhanced_list, cropped_enhanced_alpha_list, basic_pipe, refiner_basic_pipe_opt
class DetailerForEachTest(DetailerForEach):
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("image", "cropped", "cropped_refined", "cropped_refined_alpha", "cnet_images")
OUTPUT_IS_LIST = (False, True, True, True, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, detailer_hook=None,
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps,
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
# set fallback image
if len(cropped) == 0:
cropped = [empty_pil_tensor()]
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list
class DetailerForEachTestPipe(DetailerForEachPipe):
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE", "IMAGE", "IMAGE", "IMAGE", )
RETURN_NAMES = ("image", "segs", "basic_pipe", "cropped", "cropped_refined", "cropped_refined_alpha", 'cnet_images')
OUTPUT_IS_LIST = (False, False, False, True, True, True, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard, cycle=1,
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg,
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask,
force_inpaint, wildcard, detailer_hook,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)
# set fallback image
if len(cropped) == 0:
cropped = [empty_pil_tensor()]
if len(cropped_enhanced) == 0:
cropped_enhanced = [empty_pil_tensor()]
if len(cropped_enhanced_alpha) == 0:
cropped_enhanced_alpha = [empty_pil_tensor()]
if len(cnet_pil_list) == 0:
cnet_pil_list = [empty_pil_tensor()]
return enhanced_img, new_segs, basic_pipe, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list
class SegsBitwiseAndMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segs": ("SEGS",),
"mask": ("MASK",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, segs, mask):
return (core.segs_bitwise_and_mask(segs, mask), )
class SegsBitwiseAndMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segs": ("SEGS",),
"masks": ("MASK",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, segs, masks):
return (core.apply_mask_to_each_seg(segs, masks), )
class BitwiseAndMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"base_segs": ("SEGS",),
"mask_segs": ("SEGS",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
DESCRIPTION = "Retains only the overlapping areas between the masks included in base_segs and the mask regions of mask_segs. SEGS with no overlapping mask areas are filtered out."
def doit(self, base_segs, mask_segs):
mask = core.segs_to_combined_mask(mask_segs)
mask = make_3d_mask(mask)
return SegsBitwiseAndMask().doit(base_segs, mask)
class SubtractMaskForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"base_segs": ("SEGS",),
"mask_segs": ("SEGS",),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
DESCRIPTION = "Removes only the overlapping areas between the masks included in base_segs and the mask regions of mask_segs. SEGS with no overlapping mask areas are filtered out."
def doit(self, base_segs, mask_segs):
mask = core.segs_to_combined_mask(mask_segs)
mask = make_3d_mask(mask)
return (core.segs_bitwise_subtract_mask(base_segs, mask), )
class ToBinaryMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
"threshold": ("INT", {"default": 20, "min": 1, "max": 255}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask, threshold):
mask = to_binary_mask(mask, threshold/255.0)
return (mask,)
class FlattenMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"masks": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, masks):
masks = utils.make_3d_mask(masks)
masks = utils.flatten_mask(masks)
return (masks,)
class BitwiseAndMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = bitwise_and_masks(mask1, mask2)
return (mask,)
class SubtractMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK", ),
"mask2": ("MASK", ),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = subtract_masks(mask1, mask2)
return (mask,)
class AddMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, mask1, mask2):
mask = add_masks(mask1, mask2)
return (mask,)
import nodes
def get_image_hash(arr):
split_index1 = arr.shape[0] // 2
split_index2 = arr.shape[1] // 2
part1 = arr[:split_index1, :split_index2]
part2 = arr[:split_index1, split_index2:]
part3 = arr[split_index1:, :split_index2]
part4 = arr[split_index1:, split_index2:]
# 각 부분을 합산
sum1 = np.sum(part1)
sum2 = np.sum(part2)
sum3 = np.sum(part3)
sum4 = np.sum(part4)
return hash((sum1, sum2, sum3, sum4))
def get_file_item(base_type, path):
path_type = base_type
if path == "[output]":
path_type = "output"
path = path[:-9]
elif path == "[input]":
path_type = "input"
path = path[:-8]
elif path == "[temp]":
path_type = "temp"
path = path[:-7]
subfolder = os.path.dirname(path)
filename = os.path.basename(path)
return {
"filename": filename,
"subfolder": subfolder,
"type": path_type
}
class ImageReceiver:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required": {
"image": (sorted(files), ),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"save_to_workflow": ("BOOLEAN", {"default": False}),
"image_data": ("STRING", {"multiline": False}),
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
},
}
FUNCTION = "doit"
RETURN_TYPES = ("IMAGE", "MASK")
CATEGORY = "ImpactPack/Util"
def doit(self, image, link_id, save_to_workflow, image_data, trigger_always):
if save_to_workflow:
try:
image_data = base64.b64decode(image_data.split(",")[1])
i = Image.open(BytesIO(image_data))
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return (image, mask.unsqueeze(0))
except Exception as e:
print(f"[WARN] ComfyUI-Impact-Pack: ImageReceiver - invalid 'image_data'")
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return (empty_pil_tensor(64, 64), mask, )
else:
return nodes.LoadImage().load_image(image)
@classmethod
def VALIDATE_INPUTS(s, image, link_id, save_to_workflow, image_data, trigger_always):
if image != '#DATA' and not folder_paths.exists_annotated_filepath(image) or image.startswith("/") or ".." in image:
return "Invalid image file: {}".format(image)
return True
@classmethod
def IS_CHANGED(s, image, link_id, save_to_workflow, image_data, trigger_always):
if trigger_always:
return float("NaN")
else:
if save_to_workflow:
return hash(image_data)
else:
return hash(image)
from server import PromptServer
class ImageSender(nodes.PreviewImage):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ImgSender"}),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
OUTPUT_NODE = True
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
def doit(self, images, filename_prefix="ImgSender", link_id=0, prompt=None, extra_pnginfo=None):
result = nodes.PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo)
PromptServer.instance.send_sync("img-send", {"link_id": link_id, "images": result['ui']['images']})
return result
class LatentReceiver:
def __init__(self):
self.input_dir = folder_paths.get_input_directory()
self.type = "input"
@classmethod
def INPUT_TYPES(s):
def check_file_extension(x):
return x.endswith(".latent") or x.endswith(".latent.png")
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and check_file_extension(f)]
return {"required": {
"latent": (sorted(files), ),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
},
}
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = ("LATENT",)
@staticmethod
def load_preview_latent(image_path):
if not os.path.exists(image_path):
return None
image = Image.open(image_path)
exif_data = piexif.load(image.info["exif"])
if piexif.ExifIFD.UserComment in exif_data["Exif"]:
compressed_data = exif_data["Exif"][piexif.ExifIFD.UserComment]
compressed_data_io = BytesIO(compressed_data)
with zipfile.ZipFile(compressed_data_io, mode='r') as archive:
tensor_bytes = archive.read("latent")
tensor = safetensors.torch.load(tensor_bytes)
return {"samples": tensor['latent_tensor']}
return None
def parse_filename(self, filename):
pattern = r"^(.*)/(.*?)\[(.*)\]\s*$"
match = re.match(pattern, filename)
if match:
subfolder = match.group(1)
filename = match.group(2).rstrip()
file_type = match.group(3)
else:
subfolder = ''
file_type = self.type
return {'filename': filename, 'subfolder': subfolder, 'type': file_type}
def doit(self, **kwargs):
if 'latent' not in kwargs:
return (torch.zeros([1, 4, 8, 8]), )
latent = kwargs['latent']
latent_name = latent
latent_path = folder_paths.get_annotated_filepath(latent_name)
if latent.endswith(".latent"):
latent = safetensors.torch.load_file(latent_path, device="cpu")
multiplier = 1.0
if "latent_format_version_0" not in latent:
multiplier = 1.0 / 0.18215
samples = {"samples": latent["latent_tensor"].float() * multiplier}
else:
samples = LatentReceiver.load_preview_latent(latent_path)
if samples is None:
samples = {'samples': torch.zeros([1, 4, 8, 8])}
preview = self.parse_filename(latent_name)
return {
'ui': {"images": [preview]},
'result': (samples, )
}
@classmethod
def IS_CHANGED(s, latent, link_id, trigger_always):
if trigger_always:
return float("NaN")
else:
image_path = folder_paths.get_annotated_filepath(latent)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, latent, link_id, trigger_always):
if not folder_paths.exists_annotated_filepath(latent) or latent.startswith("/") or ".." in latent:
return "Invalid latent file: {}".format(latent)
return True
class LatentSender(nodes.SaveLatent):
def __init__(self):
super().__init__()
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT", ),
"filename_prefix": ("STRING", {"default": "latents/LatentSender"}),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"preview_method": (["Latent2RGB-SDXL", "Latent2RGB-SD15", "TAESDXL", "TAESD15"],)
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "doit"
CATEGORY = "ImpactPack/Util"
@staticmethod
def save_to_file(tensor_bytes, prompt, extra_pnginfo, image, image_path):
compressed_data = BytesIO()
with zipfile.ZipFile(compressed_data, mode='w') as archive:
archive.writestr("latent", tensor_bytes)
image = image.copy()
exif_data = {"Exif": {piexif.ExifIFD.UserComment: compressed_data.getvalue()}}
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
exif_bytes = piexif.dump(exif_data)
image.save(image_path, format='png', exif=exif_bytes, pnginfo=metadata, optimize=True)
@staticmethod
def prepare_preview(latent_tensor, preview_method):
from comfy.cli_args import LatentPreviewMethod
import comfy.latent_formats as latent_formats
lower_bound = 128
upper_bound = 256
if preview_method == "Latent2RGB-SD15":
latent_format = latent_formats.SD15()
method = LatentPreviewMethod.Latent2RGB
elif preview_method == "TAESD15":
latent_format = latent_formats.SD15()
method = LatentPreviewMethod.TAESD
elif preview_method == "TAESDXL":
latent_format = latent_formats.SDXL()
method = LatentPreviewMethod.TAESD
else: # preview_method == "Latent2RGB-SDXL"
latent_format = latent_formats.SDXL()
method = LatentPreviewMethod.Latent2RGB
previewer = core.get_previewer("cpu", latent_format=latent_format, force=True, method=method)
image = previewer.decode_latent_to_preview(latent_tensor)
min_size = min(image.size[0], image.size[1])
max_size = max(image.size[0], image.size[1])
scale_factor = 1
if max_size > upper_bound:
scale_factor = upper_bound/max_size
# prevent too small preview
if min_size*scale_factor < lower_bound:
scale_factor = lower_bound/min_size
w = int(image.size[0] * scale_factor)
h = int(image.size[1] * scale_factor)
image = image.resize((w, h), resample=Image.NEAREST)
return LatentSender.attach_format_text(image)
@staticmethod
def attach_format_text(image):
width_a, height_a = image.size
letter_image = Image.open(latent_letter_path)
width_b, height_b = letter_image.size
new_width = max(width_a, width_b)
new_height = height_a + height_b
new_image = Image.new('RGB', (new_width, new_height), (0, 0, 0))
offset_x = (new_width - width_b) // 2
offset_y = (height_a + (new_height - height_a - height_b) // 2)
new_image.paste(letter_image, (offset_x, offset_y))
new_image.paste(image, (0, 0))
return new_image
def doit(self, samples, filename_prefix="latents/LatentSender", link_id=0, preview_method="Latent2RGB-SDXL", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# load preview
preview = LatentSender.prepare_preview(samples['samples'], preview_method)
# support save metadata for latent sharing
file = f"{filename}_{counter:05}_.latent.png"
fullpath = os.path.join(full_output_folder, file)
output = {"latent_tensor": samples["samples"]}
tensor_bytes = safetensors.torch.save(output)
LatentSender.save_to_file(tensor_bytes, prompt, extra_pnginfo, preview, fullpath)
latent_path = {
'filename': file,
'subfolder': subfolder,
'type': self.type
}
PromptServer.instance.send_sync("latent-send", {"link_id": link_id, "images": [latent_path]})
return {'ui': {'images': [latent_path]}}
class ImpactWildcardProcessor:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
},
}
CATEGORY = "ImpactPack/Prompt"
RETURN_TYPES = ("STRING", )
FUNCTION = "doit"
@staticmethod
def process(**kwargs):
return impact.wildcards.process(**kwargs)
def doit(self, *args, **kwargs):
populated_text = ImpactWildcardProcessor.process(text=kwargs['populated_text'], seed=kwargs['seed'])
return (populated_text, )
class ImpactWildcardEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"clip": ("CLIP",),
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}),
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ),
"Select to add Wildcard": (["Select the Wildcard to add to the text"], ),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
CATEGORY = "ImpactPack/Prompt"
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING")
RETURN_NAMES = ("model", "clip", "conditioning", "populated_text")
FUNCTION = "doit"
@staticmethod
def process_with_loras(**kwargs):
return impact.wildcards.process_with_loras(**kwargs)
@staticmethod
def get_wildcard_list():
return impact.wildcards.get_wildcard_list()
def doit(self, *args, **kwargs):
populated = kwargs['populated_text']
processed = []
model, clip, conditioning = impact.wildcards.process_with_loras(wildcard_opt=populated, model=kwargs['model'], clip=kwargs['clip'], seed=kwargs['seed'], processed=processed)
return model, clip, conditioning, processed[0]
class ImpactSchedulerAdapter:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"defaultInput": True, }),
"extra_scheduler": (['None', 'AYS SDXL', 'AYS SD1', 'AYS SVD', 'GITS[coeff=1.2]'],),
}}
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = (core.SCHEDULERS,)
RETURN_NAMES = ("scheduler",)
FUNCTION = "doit"
def doit(self, scheduler, extra_scheduler):
if extra_scheduler != 'None':
return (extra_scheduler,)
return (scheduler,)