Spaces:
Running
Running
import folder_paths | |
from impact.core import * | |
import os | |
import mmcv | |
from mmdet.apis import (inference_detector, init_detector) | |
from mmdet.evaluation import get_classes | |
def load_mmdet(model_path): | |
model_config = os.path.splitext(model_path)[0] + ".py" | |
model = init_detector(model_config, model_path, device="cpu") | |
return model | |
def inference_segm_old(model, image, conf_threshold): | |
image = image.numpy()[0] * 255 | |
mmdet_results = inference_detector(model, image) | |
bbox_results, segm_results = mmdet_results | |
label = "A" | |
classes = get_classes("coco") | |
labels = [ | |
np.full(bbox.shape[0], i, dtype=np.int32) | |
for i, bbox in enumerate(bbox_results) | |
] | |
n, m = bbox_results[0].shape | |
if n == 0: | |
return [[], [], []] | |
labels = np.concatenate(labels) | |
bboxes = np.vstack(bbox_results) | |
segms = mmcv.concat_list(segm_results) | |
filter_idxs = np.where(bboxes[:, -1] > conf_threshold)[0] | |
results = [[], [], []] | |
for i in filter_idxs: | |
results[0].append(label + "-" + classes[labels[i]]) | |
results[1].append(bboxes[i]) | |
results[2].append(segms[i]) | |
return results | |
def inference_segm(image, modelname, conf_thres, lab="A"): | |
image = image.numpy()[0] * 255 | |
mmdet_results = inference_detector(modelname, image).pred_instances | |
bboxes = mmdet_results.bboxes.numpy() | |
segms = mmdet_results.masks.numpy() | |
scores = mmdet_results.scores.numpy() | |
classes = get_classes("coco") | |
n, m = bboxes.shape | |
if n == 0: | |
return [[], [], [], []] | |
labels = mmdet_results.labels | |
filter_inds = np.where(mmdet_results.scores > conf_thres)[0] | |
results = [[], [], [], []] | |
for i in filter_inds: | |
results[0].append(lab + "-" + classes[labels[i]]) | |
results[1].append(bboxes[i]) | |
results[2].append(segms[i]) | |
results[3].append(scores[i]) | |
return results | |
def inference_bbox(modelname, image, conf_threshold): | |
image = image.numpy()[0] * 255 | |
label = "A" | |
output = inference_detector(modelname, image).pred_instances | |
cv2_image = np.array(image) | |
cv2_image = cv2_image[:, :, ::-1].copy() | |
cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY) | |
segms = [] | |
for x0, y0, x1, y1 in output.bboxes: | |
cv2_mask = np.zeros(cv2_gray.shape, np.uint8) | |
cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1) | |
cv2_mask_bool = cv2_mask.astype(bool) | |
segms.append(cv2_mask_bool) | |
n, m = output.bboxes.shape | |
if n == 0: | |
return [[], [], [], []] | |
bboxes = output.bboxes.numpy() | |
scores = output.scores.numpy() | |
filter_idxs = np.where(scores > conf_threshold)[0] | |
results = [[], [], [], []] | |
for i in filter_idxs: | |
results[0].append(label) | |
results[1].append(bboxes[i]) | |
results[2].append(segms[i]) | |
results[3].append(scores[i]) | |
return results | |
class BBoxDetector: | |
bbox_model = None | |
def __init__(self, bbox_model): | |
self.bbox_model = bbox_model | |
def detect(self, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None): | |
drop_size = max(drop_size, 1) | |
mmdet_results = inference_bbox(self.bbox_model, image, threshold) | |
segmasks = create_segmasks(mmdet_results) | |
if dilation > 0: | |
segmasks = dilate_masks(segmasks, dilation) | |
items = [] | |
h = image.shape[1] | |
w = image.shape[2] | |
for x in segmasks: | |
item_bbox = x[0] | |
item_mask = x[1] | |
y1, x1, y2, x2 = item_bbox | |
if x2 - x1 > drop_size and y2 - y1 > drop_size: # minimum dimension must be (2,2) to avoid squeeze issue | |
crop_region = make_crop_region(w, h, item_bbox, crop_factor) | |
cropped_image = crop_image(image, crop_region) | |
cropped_mask = crop_ndarray2(item_mask, crop_region) | |
confidence = x[2] | |
# bbox_size = (item_bbox[2]-item_bbox[0],item_bbox[3]-item_bbox[1]) # (w,h) | |
item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None) | |
items.append(item) | |
shape = image.shape[1], image.shape[2] | |
return shape, items | |
def detect_combined(self, image, threshold, dilation): | |
mmdet_results = inference_bbox(self.bbox_model, image, threshold) | |
segmasks = create_segmasks(mmdet_results) | |
if dilation > 0: | |
segmasks = dilate_masks(segmasks, dilation) | |
return combine_masks(segmasks) | |
def setAux(self, x): | |
pass | |
class SegmDetector(BBoxDetector): | |
segm_model = None | |
def __init__(self, segm_model): | |
self.segm_model = segm_model | |
def detect(self, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None): | |
drop_size = max(drop_size, 1) | |
mmdet_results = inference_segm(image, self.segm_model, threshold) | |
segmasks = create_segmasks(mmdet_results) | |
if dilation > 0: | |
segmasks = dilate_masks(segmasks, dilation) | |
items = [] | |
h = image.shape[1] | |
w = image.shape[2] | |
for x in segmasks: | |
item_bbox = x[0] | |
item_mask = x[1] | |
y1, x1, y2, x2 = item_bbox | |
if x2 - x1 > drop_size and y2 - y1 > drop_size: # minimum dimension must be (2,2) to avoid squeeze issue | |
crop_region = make_crop_region(w, h, item_bbox, crop_factor) | |
cropped_image = crop_image(image, crop_region) | |
cropped_mask = crop_ndarray2(item_mask, crop_region) | |
confidence = x[2] | |
item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None) | |
items.append(item) | |
segs = image.shape, items | |
if detailer_hook is not None and hasattr(detailer_hook, "post_detection"): | |
segs = detailer_hook.post_detection(segs) | |
return segs | |
def detect_combined(self, image, threshold, dilation): | |
mmdet_results = inference_bbox(self.bbox_model, image, threshold) | |
segmasks = create_segmasks(mmdet_results) | |
if dilation > 0: | |
segmasks = dilate_masks(segmasks, dilation) | |
return combine_masks(segmasks) | |
def setAux(self, x): | |
pass | |
class MMDetDetectorProvider: | |
def INPUT_TYPES(s): | |
bboxs = ["bbox/"+x for x in folder_paths.get_filename_list("mmdets_bbox")] | |
segms = ["segm/"+x for x in folder_paths.get_filename_list("mmdets_segm")] | |
return {"required": {"model_name": (bboxs + segms, )}} | |
RETURN_TYPES = ("BBOX_DETECTOR", "SEGM_DETECTOR") | |
FUNCTION = "load_mmdet" | |
CATEGORY = "ImpactPack" | |
def load_mmdet(self, model_name): | |
mmdet_path = folder_paths.get_full_path("mmdets", model_name) | |
model = load_mmdet(mmdet_path) | |
if model_name.startswith("bbox"): | |
return BBoxDetector(model), NO_SEGM_DETECTOR() | |
else: | |
return NO_BBOX_DETECTOR(), model |