Spaces:
Running
Running
# Due to the current lack of maintenance for the `ComfyUI_Noise` extension, | |
# I have copied the code from the applied PR. | |
# https://github.com/BlenderNeko/ComfyUI_Noise/pull/13/files | |
import comfy | |
import torch | |
from comfy import sampler_helpers | |
class Unsampler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"end_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,), | |
"normalize": (["disable", "enable"],), | |
"positive": ("CONDITIONING",), | |
"negative": ("CONDITIONING",), | |
"latent_image": ("LATENT",), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "unsampler" | |
CATEGORY = "sampling" | |
def unsampler(self, model, cfg, sampler_name, steps, end_at_step, scheduler, normalize, positive, negative, | |
latent_image): | |
normalize = normalize == "enable" | |
device = comfy.model_management.get_torch_device() | |
latent = latent_image | |
latent_image = latent["samples"] | |
end_at_step = min(end_at_step, steps - 1) | |
end_at_step = steps - end_at_step | |
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = comfy.sampler_helpers.prepare_mask(latent["noise_mask"], noise.shape, device) | |
noise = noise.to(device) | |
latent_image = latent_image.to(device) | |
conds0 = \ | |
{"positive": comfy.sampler_helpers.convert_cond(positive), | |
"negative": comfy.sampler_helpers.convert_cond(negative)} | |
conds = {} | |
for k in conds0: | |
conds[k] = list(map(lambda a: a.copy(), conds0[k])) | |
models, inference_memory = comfy.sampler_helpers.get_additional_models(conds, model.model_dtype()) | |
comfy.model_management.load_models_gpu([model] + models, model.memory_required(noise.shape) + inference_memory) | |
sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, | |
scheduler=scheduler, denoise=1.0, model_options=model.model_options) | |
sigmas = sampler.sigmas.flip(0) + 0.0001 | |
pbar = comfy.utils.ProgressBar(steps) | |
def callback(step, x0, x, total_steps): | |
pbar.update_absolute(step + 1, total_steps) | |
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, | |
force_full_denoise=False, denoise_mask=noise_mask, sigmas=sigmas, start_step=0, | |
last_step=end_at_step, callback=callback) | |
if normalize: | |
# technically doesn't normalize because unsampling is not guaranteed to end at a std given by the schedule | |
samples -= samples.mean() | |
samples /= samples.std() | |
samples = samples.cpu() | |
comfy.sampler_helpers.cleanup_additional_models(models) | |
out = latent.copy() | |
out["samples"] = samples | |
return (out,) | |