Spaces:
Running
Running
import torch | |
import os | |
import comfy.utils | |
import folder_paths | |
import numpy as np | |
import math | |
import cv2 | |
import PIL.Image | |
from .resampler import Resampler | |
from .CrossAttentionPatch import Attn2Replace, instantid_attention | |
from .utils import tensor_to_image | |
from insightface.app import FaceAnalysis | |
try: | |
import torchvision.transforms.v2 as T | |
except ImportError: | |
import torchvision.transforms as T | |
import torch.nn.functional as F | |
MODELS_DIR = os.path.join(folder_paths.models_dir, "instantid") | |
if "instantid" not in folder_paths.folder_names_and_paths: | |
current_paths = [MODELS_DIR] | |
else: | |
current_paths, _ = folder_paths.folder_names_and_paths["instantid"] | |
folder_paths.folder_names_and_paths["instantid"] = (current_paths, folder_paths.supported_pt_extensions) | |
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface") | |
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
h, w, _ = image_pil.shape | |
out_img = np.zeros([h, w, 3]) | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
class InstantID(torch.nn.Module): | |
def __init__(self, instantid_model, cross_attention_dim=1280, output_cross_attention_dim=1024, clip_embeddings_dim=512, clip_extra_context_tokens=16): | |
super().__init__() | |
self.clip_embeddings_dim = clip_embeddings_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.output_cross_attention_dim = output_cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.image_proj_model = self.init_proj() | |
self.image_proj_model.load_state_dict(instantid_model["image_proj"]) | |
self.ip_layers = To_KV(instantid_model["ip_adapter"]) | |
def init_proj(self): | |
image_proj_model = Resampler( | |
dim=self.cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=20, | |
num_queries=self.clip_extra_context_tokens, | |
embedding_dim=self.clip_embeddings_dim, | |
output_dim=self.output_cross_attention_dim, | |
ff_mult=4 | |
) | |
return image_proj_model | |
def get_image_embeds(self, clip_embed, clip_embed_zeroed): | |
#image_prompt_embeds = clip_embed.clone().detach() | |
image_prompt_embeds = self.image_proj_model(clip_embed) | |
#uncond_image_prompt_embeds = clip_embed_zeroed.clone().detach() | |
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
class ImageProjModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, image_embeds): | |
embeds = image_embeds | |
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) | |
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
return clip_extra_context_tokens | |
class To_KV(torch.nn.Module): | |
def __init__(self, state_dict): | |
super().__init__() | |
self.to_kvs = torch.nn.ModuleDict() | |
for key, value in state_dict.items(): | |
k = key.replace(".weight", "").replace(".", "_") | |
self.to_kvs[k] = torch.nn.Linear(value.shape[1], value.shape[0], bias=False) | |
self.to_kvs[k].weight.data = value | |
def _set_model_patch_replace(model, patch_kwargs, key): | |
to = model.model_options["transformer_options"].copy() | |
if "patches_replace" not in to: | |
to["patches_replace"] = {} | |
else: | |
to["patches_replace"] = to["patches_replace"].copy() | |
if "attn2" not in to["patches_replace"]: | |
to["patches_replace"]["attn2"] = {} | |
else: | |
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy() | |
if key not in to["patches_replace"]["attn2"]: | |
to["patches_replace"]["attn2"][key] = Attn2Replace(instantid_attention, **patch_kwargs) | |
model.model_options["transformer_options"] = to | |
else: | |
to["patches_replace"]["attn2"][key].add(instantid_attention, **patch_kwargs) | |
class InstantIDModelLoader: | |
def INPUT_TYPES(s): | |
return {"required": { "instantid_file": (folder_paths.get_filename_list("instantid"), )}} | |
RETURN_TYPES = ("INSTANTID",) | |
FUNCTION = "load_model" | |
CATEGORY = "InstantID" | |
def load_model(self, instantid_file): | |
ckpt_path = folder_paths.get_full_path("instantid", instantid_file) | |
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True) | |
if ckpt_path.lower().endswith(".safetensors"): | |
st_model = {"image_proj": {}, "ip_adapter": {}} | |
for key in model.keys(): | |
if key.startswith("image_proj."): | |
st_model["image_proj"][key.replace("image_proj.", "")] = model[key] | |
elif key.startswith("ip_adapter."): | |
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] | |
model = st_model | |
model = InstantID( | |
model, | |
cross_attention_dim=1280, | |
output_cross_attention_dim=model["ip_adapter"]["1.to_k_ip.weight"].shape[1], | |
clip_embeddings_dim=512, | |
clip_extra_context_tokens=16, | |
) | |
return (model,) | |
def extractFeatures(insightface, image, extract_kps=False): | |
face_img = tensor_to_image(image) | |
out = [] | |
insightface.det_model.input_size = (640,640) # reset the detection size | |
for i in range(face_img.shape[0]): | |
for size in [(size, size) for size in range(640, 128, -64)]: | |
insightface.det_model.input_size = size # TODO: hacky but seems to be working | |
face = insightface.get(face_img[i]) | |
if face: | |
face = sorted(face, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] | |
if extract_kps: | |
out.append(draw_kps(face_img[i], face['kps'])) | |
else: | |
out.append(torch.from_numpy(face['embedding']).unsqueeze(0)) | |
if 640 not in size: | |
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") | |
break | |
if out: | |
if extract_kps: | |
out = torch.stack(T.ToTensor()(out), dim=0).permute([0,2,3,1]) | |
else: | |
out = torch.stack(out, dim=0) | |
else: | |
out = None | |
return out | |
class InstantIDFaceAnalysis: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"provider": (["CPU", "CUDA", "ROCM", "CoreML"], ), | |
}, | |
} | |
RETURN_TYPES = ("FACEANALYSIS",) | |
FUNCTION = "load_insight_face" | |
CATEGORY = "InstantID" | |
def load_insight_face(self, provider): | |
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l | |
model.prepare(ctx_id=0, det_size=(640, 640)) | |
return (model,) | |
class FaceKeypointsPreprocessor: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"faceanalysis": ("FACEANALYSIS", ), | |
"image": ("IMAGE", ), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "preprocess_image" | |
CATEGORY = "InstantID" | |
def preprocess_image(self, faceanalysis, image): | |
face_kps = extractFeatures(faceanalysis, image, extract_kps=True) | |
if face_kps is None: | |
face_kps = torch.zeros_like(image) | |
print(f"\033[33mWARNING: no face detected, unable to extract the keypoints!\033[0m") | |
#raise Exception('Face Keypoints Image: No face detected.') | |
return (face_kps,) | |
def add_noise(image, factor): | |
seed = int(torch.sum(image).item()) % 1000000007 | |
torch.manual_seed(seed) | |
mask = (torch.rand_like(image) < factor).float() | |
noise = torch.rand_like(image) | |
noise = torch.zeros_like(image) * (1-mask) + noise * mask | |
return factor*noise | |
class ApplyInstantID: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"instantid": ("INSTANTID", ), | |
"insightface": ("FACEANALYSIS", ), | |
"control_net": ("CONTROL_NET", ), | |
"image": ("IMAGE", ), | |
"model": ("MODEL", ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 5.0, "step": 0.01, }), | |
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
}, | |
"optional": { | |
"image_kps": ("IMAGE",), | |
"mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING",) | |
RETURN_NAMES = ("MODEL", "positive", "negative", ) | |
FUNCTION = "apply_instantid" | |
CATEGORY = "InstantID" | |
def apply_instantid(self, instantid, insightface, control_net, image, model, positive, negative, start_at, end_at, weight=.8, ip_weight=None, cn_strength=None, noise=0.35, image_kps=None, mask=None, combine_embeds='average'): | |
dtype = comfy.model_management.unet_dtype() | |
if dtype not in [torch.float32, torch.float16, torch.bfloat16]: | |
dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32 | |
self.dtype = dtype | |
self.device = comfy.model_management.get_torch_device() | |
ip_weight = weight if ip_weight is None else ip_weight | |
cn_strength = weight if cn_strength is None else cn_strength | |
face_embed = extractFeatures(insightface, image) | |
if face_embed is None: | |
raise Exception('Reference Image: No face detected.') | |
# if no keypoints image is provided, use the image itself (only the first one in the batch) | |
face_kps = extractFeatures(insightface, image_kps if image_kps is not None else image[0].unsqueeze(0), extract_kps=True) | |
if face_kps is None: | |
face_kps = torch.zeros_like(image) if image_kps is None else image_kps | |
print(f"\033[33mWARNING: No face detected in the keypoints image!\033[0m") | |
clip_embed = face_embed | |
# InstantID works better with averaged embeds (TODO: needs testing) | |
if clip_embed.shape[0] > 1: | |
if combine_embeds == 'average': | |
clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0) | |
elif combine_embeds == 'norm average': | |
clip_embed = torch.mean(clip_embed / torch.norm(clip_embed, dim=0, keepdim=True), dim=0).unsqueeze(0) | |
if noise > 0: | |
seed = int(torch.sum(clip_embed).item()) % 1000000007 | |
torch.manual_seed(seed) | |
clip_embed_zeroed = noise * torch.rand_like(clip_embed) | |
#clip_embed_zeroed = add_noise(clip_embed, noise) | |
else: | |
clip_embed_zeroed = torch.zeros_like(clip_embed) | |
# 1: patch the attention | |
self.instantid = instantid | |
self.instantid.to(self.device, dtype=self.dtype) | |
image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype)) | |
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype) | |
work_model = model.clone() | |
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
if mask is not None: | |
mask = mask.to(self.device) | |
patch_kwargs = { | |
"ipadapter": self.instantid, | |
"weight": ip_weight, | |
"cond": image_prompt_embeds, | |
"uncond": uncond_image_prompt_embeds, | |
"mask": mask, | |
"sigma_start": sigma_start, | |
"sigma_end": sigma_end, | |
} | |
number = 0 | |
for id in [4,5,7,8]: # id of input_blocks that have cross attention | |
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("input", id, index)) | |
number += 1 | |
for id in range(6): # id of output_blocks that have cross attention | |
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("output", id, index)) | |
number += 1 | |
for index in range(10): | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 1, index)) | |
number += 1 | |
# 2: do the ControlNet | |
if mask is not None and len(mask.shape) < 3: | |
mask = mask.unsqueeze(0) | |
cnets = {} | |
cond_uncond = [] | |
is_cond = True | |
for conditioning in [positive, negative]: | |
c = [] | |
for t in conditioning: | |
d = t[1].copy() | |
prev_cnet = d.get('control', None) | |
if prev_cnet in cnets: | |
c_net = cnets[prev_cnet] | |
else: | |
c_net = control_net.copy().set_cond_hint(face_kps.movedim(-1,1), cn_strength, (start_at, end_at)) | |
c_net.set_previous_controlnet(prev_cnet) | |
cnets[prev_cnet] = c_net | |
d['control'] = c_net | |
d['control_apply_to_uncond'] = False | |
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device(), dtype=c_net.cond_hint_original.dtype) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device(), dtype=c_net.cond_hint_original.dtype) | |
if mask is not None and is_cond: | |
d['mask'] = mask | |
d['set_area_to_bounds'] = False | |
n = [t[0], d] | |
c.append(n) | |
cond_uncond.append(c) | |
is_cond = False | |
return(work_model, cond_uncond[0], cond_uncond[1], ) | |
class ApplyInstantIDAdvanced(ApplyInstantID): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"instantid": ("INSTANTID", ), | |
"insightface": ("FACEANALYSIS", ), | |
"control_net": ("CONTROL_NET", ), | |
"image": ("IMAGE", ), | |
"model": ("MODEL", ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"ip_weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 3.0, "step": 0.01, }), | |
"cn_strength": ("FLOAT", {"default": .8, "min": 0.0, "max": 10.0, "step": 0.01, }), | |
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }), | |
"combine_embeds": (['average', 'norm average', 'concat'], {"default": 'average'}), | |
}, | |
"optional": { | |
"image_kps": ("IMAGE",), | |
"mask": ("MASK",), | |
} | |
} | |
class InstantIDAttentionPatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"instantid": ("INSTANTID", ), | |
"insightface": ("FACEANALYSIS", ), | |
"image": ("IMAGE", ), | |
"model": ("MODEL", ), | |
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01, }), | |
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }), | |
}, | |
"optional": { | |
"mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MODEL", "FACE_EMBEDS") | |
FUNCTION = "patch_attention" | |
CATEGORY = "InstantID" | |
def patch_attention(self, instantid, insightface, image, model, weight, start_at, end_at, noise=0.0, mask=None): | |
self.dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32 | |
self.device = comfy.model_management.get_torch_device() | |
face_embed = extractFeatures(insightface, image) | |
if face_embed is None: | |
raise Exception('Reference Image: No face detected.') | |
clip_embed = face_embed | |
# InstantID works better with averaged embeds (TODO: needs testing) | |
if clip_embed.shape[0] > 1: | |
clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0) | |
if noise > 0: | |
seed = int(torch.sum(clip_embed).item()) % 1000000007 | |
torch.manual_seed(seed) | |
clip_embed_zeroed = noise * torch.rand_like(clip_embed) | |
else: | |
clip_embed_zeroed = torch.zeros_like(clip_embed) | |
# 1: patch the attention | |
self.instantid = instantid | |
self.instantid.to(self.device, dtype=self.dtype) | |
image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype)) | |
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype) | |
if weight == 0: | |
return (model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds } ) | |
work_model = model.clone() | |
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
if mask is not None: | |
mask = mask.to(self.device) | |
patch_kwargs = { | |
"weight": weight, | |
"ipadapter": self.instantid, | |
"cond": image_prompt_embeds, | |
"uncond": uncond_image_prompt_embeds, | |
"mask": mask, | |
"sigma_start": sigma_start, | |
"sigma_end": sigma_end, | |
} | |
number = 0 | |
for id in [4,5,7,8]: # id of input_blocks that have cross attention | |
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("input", id, index)) | |
number += 1 | |
for id in range(6): # id of output_blocks that have cross attention | |
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("output", id, index)) | |
number += 1 | |
for index in range(10): | |
patch_kwargs["module_key"] = str(number*2+1) | |
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index)) | |
number += 1 | |
return(work_model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds }, ) | |
class ApplyInstantIDControlNet: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"face_embeds": ("FACE_EMBEDS", ), | |
"control_net": ("CONTROL_NET", ), | |
"image_kps": ("IMAGE", ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, }), | |
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), | |
}, | |
"optional": { | |
"mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",) | |
RETURN_NAMES = ("positive", "negative", ) | |
FUNCTION = "apply_controlnet" | |
CATEGORY = "InstantID" | |
def apply_controlnet(self, face_embeds, control_net, image_kps, positive, negative, strength, start_at, end_at, mask=None): | |
self.device = comfy.model_management.get_torch_device() | |
if strength == 0: | |
return (positive, negative) | |
if mask is not None: | |
mask = mask.to(self.device) | |
if mask is not None and len(mask.shape) < 3: | |
mask = mask.unsqueeze(0) | |
image_prompt_embeds = face_embeds['cond'] | |
uncond_image_prompt_embeds = face_embeds['uncond'] | |
cnets = {} | |
cond_uncond = [] | |
control_hint = image_kps.movedim(-1,1) | |
is_cond = True | |
for conditioning in [positive, negative]: | |
c = [] | |
for t in conditioning: | |
d = t[1].copy() | |
prev_cnet = d.get('control', None) | |
if prev_cnet in cnets: | |
c_net = cnets[prev_cnet] | |
else: | |
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_at, end_at)) | |
c_net.set_previous_controlnet(prev_cnet) | |
cnets[prev_cnet] = c_net | |
d['control'] = c_net | |
d['control_apply_to_uncond'] = False | |
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device()) | |
if mask is not None and is_cond: | |
d['mask'] = mask | |
d['set_area_to_bounds'] = False | |
n = [t[0], d] | |
c.append(n) | |
cond_uncond.append(c) | |
is_cond = False | |
return(cond_uncond[0], cond_uncond[1]) | |
NODE_CLASS_MAPPINGS = { | |
"InstantIDModelLoader": InstantIDModelLoader, | |
"InstantIDFaceAnalysis": InstantIDFaceAnalysis, | |
"ApplyInstantID": ApplyInstantID, | |
"ApplyInstantIDAdvanced": ApplyInstantIDAdvanced, | |
"FaceKeypointsPreprocessor": FaceKeypointsPreprocessor, | |
"InstantIDAttentionPatch": InstantIDAttentionPatch, | |
"ApplyInstantIDControlNet": ApplyInstantIDControlNet, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"InstantIDModelLoader": "Load InstantID Model", | |
"InstantIDFaceAnalysis": "InstantID Face Analysis", | |
"ApplyInstantID": "Apply InstantID", | |
"ApplyInstantIDAdvanced": "Apply InstantID Advanced", | |
"FaceKeypointsPreprocessor": "Face Keypoints Preprocessor", | |
"InstantIDAttentionPatch": "InstantID Patch Attention", | |
"ApplyInstantIDControlNet": "InstantID Apply ControlNet", | |
} | |