gartajackhats1985's picture
Upload 1830 files
07f408f verified
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
import comfy.model_management as model_management
import numpy as np
import warnings
from custom_controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector
import os
import json
DWPOSE_MODEL_NAME = "yzd-v/DWPose"
#Trigger startup caching for onnxruntime
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"]
def check_ort_gpu():
try:
import onnxruntime as ort
for provider in GPU_PROVIDERS:
if provider in ort.get_available_providers():
return True
return False
except:
return False
if not os.environ.get("DWPOSE_ONNXRT_CHECKED"):
if check_ort_gpu():
print("DWPose: Onnxruntime with acceleration providers detected")
else:
warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly")
os.environ['AUX_ORT_PROVIDERS'] = ''
os.environ["DWPOSE_ONNXRT_CHECKED"] = '1'
class DWPose_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
detect_hand=INPUT.COMBO(["enable", "disable"]),
detect_body=INPUT.COMBO(["enable", "disable"]),
detect_face=INPUT.COMBO(["enable", "disable"]),
resolution=INPUT.RESOLUTION(),
bbox_detector=INPUT.COMBO(
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
default="yolox_l.onnx"
),
pose_estimator=INPUT.COMBO(
["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"],
default="dw-ll_ucoco_384_bs5.torchscript.pt"
),
scale_stick_for_xinsr_cn=INPUT.COMBO(["disable", "enable"])
)
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
FUNCTION = "estimate_pose"
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", scale_stick_for_xinsr_cn="disable", **kwargs):
if bbox_detector == "yolox_l.onnx":
yolo_repo = DWPOSE_MODEL_NAME
elif "yolox" in bbox_detector:
yolo_repo = "hr16/yolox-onnx"
elif "yolo_nas" in bbox_detector:
yolo_repo = "hr16/yolo-nas-fp16"
else:
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
if pose_estimator == "dw-ll_ucoco_384.onnx":
pose_repo = DWPOSE_MODEL_NAME
elif pose_estimator.endswith(".onnx"):
pose_repo = "hr16/UnJIT-DWPose"
elif pose_estimator.endswith(".torchscript.pt"):
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
else:
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
model = DwposeDetector.from_pretrained(
pose_repo,
yolo_repo,
det_filename=bbox_detector, pose_filename=pose_estimator,
torchscript_device=model_management.get_torch_device()
)
detect_hand = detect_hand == "enable"
detect_body = detect_body == "enable"
detect_face = detect_face == "enable"
scale_stick_for_xinsr_cn = scale_stick_for_xinsr_cn == "enable"
self.openpose_dicts = []
def func(image, **kwargs):
pose_img, openpose_dict = model(image, **kwargs)
self.openpose_dicts.append(openpose_dict)
return pose_img
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution, xinsr_stick_scaling=scale_stick_for_xinsr_cn)
del model
return {
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
"result": (out, self.openpose_dicts)
}
class AnimalPose_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
bbox_detector = INPUT.COMBO(
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
default="yolox_l.torchscript.pt"
),
pose_estimator = INPUT.COMBO(
["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"],
default="rtmpose-m_ap10k_256_bs5.torchscript.pt"
),
resolution = INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
FUNCTION = "estimate_pose"
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs):
if bbox_detector == "yolox_l.onnx":
yolo_repo = DWPOSE_MODEL_NAME
elif "yolox" in bbox_detector:
yolo_repo = "hr16/yolox-onnx"
elif "yolo_nas" in bbox_detector:
yolo_repo = "hr16/yolo-nas-fp16"
else:
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
if pose_estimator == "dw-ll_ucoco_384.onnx":
pose_repo = DWPOSE_MODEL_NAME
elif pose_estimator.endswith(".onnx"):
pose_repo = "hr16/UnJIT-DWPose"
elif pose_estimator.endswith(".torchscript.pt"):
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
else:
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
model = AnimalposeDetector.from_pretrained(
pose_repo,
yolo_repo,
det_filename=bbox_detector, pose_filename=pose_estimator,
torchscript_device=model_management.get_torch_device()
)
self.openpose_dicts = []
def func(image, **kwargs):
pose_img, openpose_dict = model(image, **kwargs)
self.openpose_dicts.append(openpose_dict)
return pose_img
out = common_annotator_call(func, image, image_and_json=True, resolution=resolution)
del model
return {
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
"result": (out, self.openpose_dicts)
}
NODE_CLASS_MAPPINGS = {
"DWPreprocessor": DWPose_Preprocessor,
"AnimalPosePreprocessor": AnimalPose_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DWPreprocessor": "DWPose Estimator",
"AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)"
}