Spaces:
Running
Running
import os | |
import re | |
from nodes import MAX_RESOLUTION | |
from comfy_extras.nodes_clip_sdxl import CLIPTextEncodeSDXL | |
from .log import log_node_warn, log_node_info, log_node_success | |
from .constants import get_category, get_name | |
from .power_prompt_utils import get_and_strip_loras | |
from nodes import LoraLoader, CLIPTextEncode | |
import folder_paths | |
NODE_NAME = get_name('SDXL Power Prompt - Positive') | |
class RgthreeSDXLPowerPromptPositive: | |
"""The Power Prompt for positive conditioning.""" | |
NAME = NODE_NAME | |
CATEGORY = get_category() | |
def INPUT_TYPES(cls): # pylint: disable = invalid-name, missing-function-docstring | |
SAVED_PROMPTS_FILES = folder_paths.get_filename_list('saved_prompts') | |
SAVED_PROMPTS_CONTENT = [] | |
for filename in SAVED_PROMPTS_FILES: | |
with open(folder_paths.get_full_path('saved_prompts', filename), 'r') as f: | |
SAVED_PROMPTS_CONTENT.append(f.read()) | |
return { | |
'required': { | |
'prompt_g': ('STRING', { | |
'multiline': True | |
}), | |
'prompt_l': ('STRING', { | |
'multiline': True | |
}), | |
}, | |
'optional': { | |
"opt_model": ("MODEL",), | |
"opt_clip": ("CLIP",), | |
"opt_clip_width": ("INT", { | |
"forceInput": True, | |
"default": 1024.0, | |
"min": 0, | |
"max": MAX_RESOLUTION | |
}), | |
"opt_clip_height": ("INT", { | |
"forceInput": True, | |
"default": 1024.0, | |
"min": 0, | |
"max": MAX_RESOLUTION | |
}), | |
'insert_lora': (['CHOOSE', 'DISABLE LORAS'] + | |
[os.path.splitext(x)[0] for x in folder_paths.get_filename_list('loras')],), | |
'insert_embedding': ([ | |
'CHOOSE', | |
] + [os.path.splitext(x)[0] for x in folder_paths.get_filename_list('embeddings')],), | |
'insert_saved': ([ | |
'CHOOSE', | |
] + SAVED_PROMPTS_FILES,), | |
# We'll hide these in the UI for now. | |
"target_width": ("INT", { | |
"default": -1, | |
"min": -1, | |
"max": MAX_RESOLUTION | |
}), | |
"target_height": ("INT", { | |
"default": -1, | |
"min": -1, | |
"max": MAX_RESOLUTION | |
}), | |
"crop_width": ("INT", { | |
"default": -1, | |
"min": -1, | |
"max": MAX_RESOLUTION | |
}), | |
"crop_height": ("INT", { | |
"default": -1, | |
"min": -1, | |
"max": MAX_RESOLUTION | |
}), | |
}, | |
'hidden': { | |
'values_insert_saved': (['CHOOSE'] + SAVED_PROMPTS_CONTENT,), | |
} | |
} | |
RETURN_TYPES = ('CONDITIONING', 'MODEL', 'CLIP', 'STRING', 'STRING') | |
RETURN_NAMES = ('CONDITIONING', 'MODEL', 'CLIP', 'TEXT_G', 'TEXT_L') | |
FUNCTION = 'main' | |
def main(self, | |
prompt_g, | |
prompt_l, | |
opt_model=None, | |
opt_clip=None, | |
opt_clip_width=None, | |
opt_clip_height=None, | |
insert_lora=None, | |
insert_embedding=None, | |
insert_saved=None, | |
target_width=-1, | |
target_height=-1, | |
crop_width=-1, | |
crop_height=-1, | |
values_insert_saved=None): | |
if insert_lora == 'DISABLE LORAS': | |
prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g, | |
True, | |
log_node=self.NAME) | |
prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l, | |
True, | |
log_node=self.NAME) | |
loras = loras_g + loras_l | |
log_node_info( | |
NODE_NAME, | |
f'Disabling all found loras ({len(loras)}) and stripping lora tags for TEXT output.') | |
elif opt_model is not None and opt_clip is not None: | |
prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g, log_node=self.NAME) | |
prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l, log_node=self.NAME) | |
loras = loras_g + loras_l | |
if len(loras) > 0: | |
for lora in loras: | |
opt_model, opt_clip = LoraLoader().load_lora(opt_model, opt_clip, lora['lora'], | |
lora['strength'], lora['strength']) | |
log_node_success(NODE_NAME, f'Loaded "{lora["lora"]}" from prompt') | |
log_node_info(NODE_NAME, f'{len(loras)} Loras processed; stripping tags for TEXT output.') | |
elif '<lora:' in prompt_g or '<lora:' in prompt_l: | |
_prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g, | |
True, | |
log_node=self.NAME) | |
_prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l, | |
True, | |
log_node=self.NAME) | |
loras = loras_g + loras_l | |
if len(loras): | |
log_node_warn( | |
NODE_NAME, f'Found {len(loras)} lora tags in prompt but model & clip were not supplied!') | |
log_node_info(NODE_NAME, 'Loras not processed, keeping for TEXT output.') | |
conditioning = self.get_conditioning(prompt_g, prompt_l, opt_clip, opt_clip_width, | |
opt_clip_height, target_width, target_height, crop_width, | |
crop_height) | |
return (conditioning, opt_model, opt_clip, prompt_g, prompt_l) | |
def get_conditioning(self, prompt_g, prompt_l, opt_clip, opt_clip_width, opt_clip_height, | |
target_width, target_height, crop_width, crop_height): | |
"""Checks the inputs and gets the conditioning.""" | |
conditioning = None | |
if opt_clip is not None: | |
do_regular_clip_text_encode = opt_clip_width and opt_clip_height | |
if do_regular_clip_text_encode: | |
target_width = target_width if target_width and target_width > 0 else opt_clip_width | |
target_height = target_height if target_height and target_height > 0 else opt_clip_height | |
crop_width = crop_width if crop_width and crop_width > 0 else 0 | |
crop_height = crop_height if crop_height and crop_height > 0 else 0 | |
try: | |
conditioning = CLIPTextEncodeSDXL().encode(opt_clip, opt_clip_width, opt_clip_height, | |
crop_width, crop_height, target_width, | |
target_height, prompt_g, prompt_l)[0] | |
except Exception: | |
do_regular_clip_text_encode = True | |
log_node_info( | |
self.NAME, | |
'Exception while attempting to CLIPTextEncodeSDXL, will fall back to standard encoding.' | |
) | |
else: | |
log_node_info( | |
self.NAME, | |
'CLIP supplied, but not CLIP_WIDTH and CLIP_HEIGHT. Text encoding will use standard ' + | |
'encoding with prompt_g and prompt_l concatenated.') | |
if not do_regular_clip_text_encode: | |
conditioning = CLIPTextEncode().encode( | |
opt_clip, f'{prompt_g if prompt_g else ""}\n{prompt_l if prompt_l else ""}')[0] | |
return conditioning | |